面试01-Redis 如何从海量数据中查询出某一个 Key

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 面试01-Redis 如何从海量数据中查询出某一个 Key


1 考察知识点

本题考察的知识点有以下几个:

  1. Keys 和 Scan 的区别
  2. Keys 查询的缺点
  3. Scan 如何使用?
  4. Scan 查询的特点

2 解答思路

  1. Keys 查询存在的问题
  2. Scan 的使用
  3. Scan 的特点

3 Keys 使用相关

1)Keys 用法如下

2)Keys 存在的问题

  1. 此命令没有分页功能,我们只能一次性查询出所有符合条件的 key 值,如果查询结果非常巨大,那么得到的输出信息也会非常多;
  2. keys 命令是遍历查询,因此它的查询时间复杂度是 o(n),所以数据量越大查询时间就越长。

4 Scan 使用相关

我们先来模拟海量数据,使用 Pipeline 添加 10w 条数据,Java 代码实现如下:

import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import utils.JedisUtils;
public class ScanExample {
    public static void main(String[] args) {
        // 添加 10w 条数据
        initData();
    }
    public static void initData(){
        Jedis jedis = JedisUtils.getJedis();
        Pipeline pipe = jedis.pipelined();
        for (int i = 1; i < 100001; i++) {
            pipe.set("user_token_" + i, "id" + i);
        }
        // 执行命令
        pipe.sync();
        System.out.println("数据插入完成");
    }
}
复制代码

我们来查询用户 id 为 9999* 的数据,Scan 命令使用如下:

127.0.0.1:6379> scan 0 match user_token_9999* count 10000
1) "127064"
2) 1) "user_token_99997"
127.0.0.1:6379> scan 127064 match user_token_9999* count 10000
1) "1740"
2) 1) "user_token_9999"
127.0.0.1:6379> scan 1740 match user_token_9999* count 10000
1) "21298"
2) 1) "user_token_99996"
127.0.0.1:6379> scan 21298 match user_token_9999* count 10000
1) "65382"
2) (empty list or set)
127.0.0.1:6379> scan 65382 match user_token_9999* count 10000
1) "78081"
2) 1) "user_token_99998"
   2) "user_token_99992"
127.0.0.1:6379> scan 78081 match user_token_9999* count 10000
1) "3993"
2) 1) "user_token_99994"
   2) "user_token_99993"
127.0.0.1:6379> scan 3993 match user_token_9999* count 10000
1) "13773"
2) 1) "user_token_99995"
127.0.0.1:6379> scan 13773 match user_token_9999* count 10000
1) "47923"
2) (empty list or set)
127.0.0.1:6379> scan 47923 match user_token_9999* count 10000
1) "59751"
2) 1) "user_token_99990"
   2) "user_token_99991"
   3) "user_token_99999"
127.0.0.1:6379> scan 59751 match user_token_9999* count 10000
1) "0"
2) (empty list or set)
复制代码

从以上的执行结果,我们看出两个问题:

  1. 查询的结果为空,但游标值不为 0,表示遍历还没结束;
  2. 设置的是 count 10000,但每次返回的数量都不是 10000,且不固定,这是因为 count 只是限定服务器单次遍历的字典槽位数量 (约等于),而不是规定返回结果的 count 值。

相关语法:scan cursor [MATCH pattern] [COUNT count]

其中:

  • cursor:光标位置,整数值,从 0 开始,到 0 结束,查询结果是空,但游标值不为 0,表示遍历还没结束;
  • match pattern:正则匹配字段;
  • count:限定服务器单次遍历的字典槽位数量 (约等于),只是对增量式迭代命令的一种提示 (hint),并不是查询结果返回的最大数量,它的默认值是 10。

5 Scan 代码实战

本文我们使用 Java 代码来实现 Scan 的查询功能,代码如下:

import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.ScanParams;
import redis.clients.jedis.ScanResult;
import utils.JedisUtils;
public class ScanExample {
    public static void main(String[] args) {
        Jedis jedis = JedisUtils.getJedis();
        // 定义 match 和 count 参数
        ScanParams params = new ScanParams();
        params.count(10000);
        params.match("user_token_9999*");
        // 游标
        String cursor = "0";
        while (true) {
            ScanResult<String> res = jedis.scan(cursor, params);
            if (res.getCursor().equals("0")) {
                // 表示最后一条
                break;
            }
            cursor = res.getCursor(); // 设置游标
            for (String item : res.getResult()) {
                // 打印查询结果
                System.out.println("查询结果:" + item);
            }
        }
    }
}
复制代码

以上程序执行结果如下:

查询结果:user_token_99997

查询结果:user_token_9999

查询结果:user_token_99996

查询结果:user_token_99998

查询结果:user_token_99992

查询结果:user_token_99994

查询结果:user_token_99993

查询结果:user_token_99995

查询结果:user_token_99990

查询结果:user_token_99991

查询结果:user_token_99999

6 总结

通过本文我们了解到,Redis 中如果要在海量的数据数据中,查询某个数据应该使用 Scan,Scan 具有以下特征:

  1. Scan 可以实现 keys 的匹配功能;
  2. Scan 是通过游标进行查询的不会导致 Redis 假死;
  3. Scan 提供了 count 参数,可以规定遍历的数量;
  4. Scan 会把游标返回给客户端,用户客户端继续遍历查询;
  5. Scan 返回的结果可能会有重复数据,需要客户端去重;
  6. 单次返回空值且游标不为 0,说明遍历还没结束;
  7. Scan 可以保证在开始检索之前,被删除的元素一定不会被查询出来;
  8. 在迭代过程中如果有元素被修改, Scan 不保证能查询出相关的元素。



目录
相关文章
|
30天前
|
存储 缓存 NoSQL
Redis常见面试题全解析
Redis面试高频考点全解析:从过期删除、内存淘汰策略,到缓存雪崩、击穿、穿透及BigKey问题,深入原理与实战解决方案,助你轻松应对技术挑战,提升系统性能与稳定性。(238字)
|
6月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
2月前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
147 1
Redis专题-实战篇二-商户查询缓存
|
4月前
|
存储 NoSQL 定位技术
Redis数据类型面试给分情况
Redis常见数据类型包括:string、hash、list、set、zset(有序集合)。此外还包含高级结构如bitmap、hyperloglog、geo。不同场景可选用合适类型,如库存用string,对象存hash,列表用list,去重场景用set,排行用zset,签到用bitmap,统计访问量用hyperloglog,地理位置用geo。
115 5
|
5月前
|
缓存 NoSQL Java
Java Redis 面试题集锦 常见高频面试题目及解析
本文总结了Redis在Java中的核心面试题,包括数据类型操作、单线程高性能原理、键过期策略及分布式锁实现等关键内容。通过Jedis代码示例展示了String、List等数据类型的操作方法,讲解了惰性删除和定期删除相结合的过期策略,并提供了Spring Boot配置Redis过期时间的方案。文章还探讨了缓存穿透、雪崩等问题解决方案,以及基于Redis的分布式锁实现,帮助开发者全面掌握Redis在Java应用中的实践要点。
267 6
|
5月前
|
NoSQL 测试技术 Redis
Redis批量删除Key的三种方式
Redis批量删除Key是优化数据库性能的重要操作,本文介绍三种高效方法:1) 使用通配符匹配(KEYS/SCAN+DEL),适合不同数据规模;2) Lua脚本实现原子化删除,适用于需要事务保障的场景;3) 管道批量处理提升效率。根据实际需求选择合适方案,注意操作不可逆,建议先备份数据,避免内存溢出或阻塞。
|
5月前
|
存储 人工智能 算法
海量数据面试题
在大数据时代,海量数据处理已成为技术领域中的一项重要课题。无论是企业级应用、互联网平台,还是人工智能和机器学习的实现,都离不开对大规模数据的高效处理。而对于C++开发者来说,如何在面对海量数据时保证系统的高效性和可扩展性,已经成为面试中常见的考察内容。C++作为一种高性能的编程语言,凭借其接近硬件的操作和精细的内存管理,常常被用于构建对性能要求极高的系统。在海量数据的处理过程中,C++开发者需要不仅具备扎实的基础知识,还需掌握一些特殊的算法和数据结构,以应对各种挑战性的问题。
72 0
|
7月前
|
存储 NoSQL Redis
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 +  无锁架构 +  EDA架构  + 异步日志 + 集群架构
|
缓存 监控 NoSQL
【Redis性能瓶颈揭秘】「调优系列」深入分析热Key的排查策略和解决方案
【Redis性能瓶颈揭秘】「调优系列」深入分析热Key的排查策略和解决方案
215997 12
|
存储 缓存 NoSQL
Redis 大数据量(百亿级)Key存储需求及解决方案
最近我在思考实时数仓问题的时候,想到了巨量的redis的存储的问题,然后翻阅到这篇文章,与各位分享