【Tensorflow+自然语言处理+LSTM】搭建智能聊天客服机器人实战(附源码、数据集和演示 超详细)

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 【Tensorflow+自然语言处理+LSTM】搭建智能聊天客服机器人实战(附源码、数据集和演示 超详细)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

一、自然语言处理与智能

自然语言处理技术是智能客服应用的基础,在自然语言处理过程中,首先需要进行分词处理,这个过程通常基于统计学理论,分词的精细化可以提升智能客服的语言处理能力,统计分词和马尔可夫模型是常用的方法,但在非常用词汇的识别精度方面稍显逊色,而精度高低直接影响分词结果的准确性,多样性分词有助于发现形式上的不合理性

自然语言处理技术是智能客服中的重要的环节,也是决定智能客服应用质量好坏和问题处理效率高低的关键因素,创建智能客服通常系统先进行大量学习来充实语言知识库,并结合各种典型案例提升系统的处理能力。智能客服系统重点关注三部分:

1:知识库完善

2:服务满意度

3:处理未知场景的自我学习能力

与传统人工客服相比 智能客服应用一般具有以下优势

可以提供24小时无间断在线服务。

具备持续自主学习能力 。

处理速度快,处理效率高,

可以应对短时大容量服务请求。

成本优势。

从用户问题到答复输出涉及的流程基本框架如下图

二、智能应用开发库如下

Gensim

NLTK

SpaCy

TensorFlow TensorFlow是一个基于数据流编程(dataflow programming)的系统,被广泛应用于图形分类、音频处理、推荐系统和自然语言处理等场景的实现,提供基于Python语言的四种版本:CPU版本(tensorflow)、GPU加速版本(tensorflow-gpu)以及每日编译版本(tf-nightly、tf-nightly-gpu)。

Theano

Keras

三、充实智能客服的情感

智能客服系统既依赖于专业性数据,也与自然处理理解等人工智能技术紧密相关,在解决用户业务诉求的过程中,难免用到用户咨询以及无法解决的问题等状况,因此提升其情感分析能力,具备多维度服务能力,对提高客户整体满意度有十分重要的积极意义,智能客服,人工客服和用户之间的关系可以简要概括如下图

智能客服处理流程如下图

四、聊天客服机器人实战

开发环境简介:

我们将使用深度学习技术构建一个聊天机器人,在包含聊天意图类别、用户输入和客服响应的数据集上进行训练。基于循环神经网络(LSTM)模型来分类用户的输入消息所属类别,然后从响应列表中基于随机算法提供响应输出。该实例在执行环境Tensorflow(2.6.0)和Python(3.6.5)中运行成功,其他需要的库为NLTK和Keras。

数据集和模型简介:

所需数据和模型说明如下:

chatbot.json :预定义消息分类、输入消息和客服响应的数据文件。

wordtoken.pkl : pickle 文件,存储包含词汇列表的Python 对象。

category.pkl :pickle 文件,包含消息类别列表。

model.h5 :经过训练的模型,包含模型以及神经元权重相关信息。

数据结构

本实例数据基于JSON(JavaScript Object Notation),JSON是一种轻量级的数据交换格式,完全独立于语言,机器容易解析和生成。JSON 建立在两种结构上:

1)名称:值(name:value)的集合。在计算机语言中称为对象、记录、结构、字典、哈希表、键控列表或关联数组。

(2)值有序列表。通常实现方式为数组、向量、列表或序列,属于通用数据结构,可与通用编程语言互换。

效果展示

语料库如下

训练过程如下

用户在图形界面输入问题 客服机器人会给出相应回答

当用户提出了语料库之外的问题 客服便会显示以下回答

五、代码

项目结构如下

部分代码如下  需要全部代码请点赞关注收藏后评论区留言私信~~~

test文件

#导入库
import nltk
import pickle as pk
import numpy as np
import json as js
import random
from tensorflow import keras
from tensorflow.python.keras.models import load_model
from nltk.stem import WordNetLemmatizer
wordlem = WordNetLemmatizer()
from tkinter import * 
from tkinter import  Text  
from tkinter import  Button  
import tkinter
nltk.download('punkt')
nltk.download('wordnet')
#加载训练模型
load = load_model('data/model.h5')
#加载数据和中间结果
chatbot = js.loads(open('data/chatbot.json').read())
wordlist = pk.load(open('data/wordlist.pkl','rb'))
category = pk.load(open('data/category.pkl','rb'))
def tokenization(text):
    #分词
    word_tokens = nltk.word_tokenize(text)
    # 词形还原
    #for i in sw:
    word_tokens =  [wordlem.lemmatize(i.lower()) for i in word_tokens] 
    return word_tokens
#词袋模型
def bow(text, wordlist):
    #分词
    tokens = tokenization(text)
    bow = [0]*len(wordlist)  
    for token in tokens:
        for i,flag in enumerate(wordlist):
            if flag == token: 
                #查找匹配成功则标识为1
                bow[i] = 1
                print ("词袋模型匹配结果: %s" % flag)
    return(np.array(bow))
#预测结果
def predict(text, load):
    #设置阈值,过滤阈值以下内容
    err_level = 0.20
    outlist = []
    bow_outcome= bow(text,wordlist)
    result = load.predict(np.array([bow_outcome]))[0]
    #根据概率结果排序
    outcome = [[i,j] for i,j in enumerate(result) if j>err_level]
    outcome.sort(key=lambda x: x[1], reverse=True)
    for j in outcome:
        outlist.append({"k": category[j[0]], "probability": str(j[1])})
    return outlist
#设置应答信息
def getResponse(pred, intents_json):
    ptype = pred[0]['k']
    print("用户提问类型:",ptype)
    ctype = intents_json['chatbot']
    for type in  ctype:
        if(type['category']== ptype):
            result = random.choice(type['output'])
            print("提供给用户的响应信息:",result)
            break
    return result    
#预测消息响应
def chatbot_Response(query):
    pred = predict(query, load)
    outcome = getResponse(pred, chatbot)
    return outcome
#设置用户和智能客服之间的消息交互
def chatbotInteract():
    query = txt.get("1.0",'end-1c').strip()
    txt.delete("0.0",END)
    chatwnd.tag_config('question', background="white", foreground="black")
    chatwnd.tag_config('answer', background="white", foreground="blue")
    chatwnd.config(state=NORMAL)
    chatwnd.insert(END, "用户问题:\n" + query + '\n\n','question')
    outcome = chatbot_Response(query)
    chatwnd.insert(END, "客服回答:\n" + outcome + '\n\n','answer')   
    chatwnd.config(state=NORMAL)
    chatwnd.yview(END)
#设置智能客服应用界面风格
tk_window = tkinter.Tk(screenName=None, baseName=None)
tk_window.title("智能客服")
tk_window.geometry("500x600")
tk_window.resizable(False, False)
#设置文本框
chatwnd = Text(tk_window, borderwidth=2, cursor=None,state=NORMAL, background="white", height="12", width="70", font="Arial",wrap=WORD)
#设置滚动条
srb = Scrollbar(tk_window, command=chatwnd.yview, activebackground=None,background="white",borderwidth=2,highlightcolor="purple",cursor="arrow",
jump=0,orient=VERTICAL,width=16,elementborderwidth=1)
srb.pack( side = RIGHT, fill = Y )
chatwnd['yscrollcommand'] = srb.set
#设置信息输入框风格
txt = Text(tk_window, borderwidth=0, cursor=None,background="white",width="25", height="8", font="Arial",wrap=WORD)
#设置发送消息按钮风格
msgBtn = Button(tk_window, font=("kaiti",14), text="咨询", width=12, height=8,highlightcolor=None,image=None,justify=CENTER,state=ACTIVE,
                    borderwidth=0, background="Blue", activebackground="#524e78",fg ='white',relief=RAISED,
                    command= chatbotInteract )
#显示组件内容
srb.place(x=404,y=12, height=398)
chatwnd.place(relx=0.0, rely=0.35, relwidth=0.8, relheight=0.66, anchor='w')
msgBtn.place(bordermode=OUTSIDE,x=175, y=540, height=50)
txt.place(x=2, y=411, height=100, width=400)
tk_window.mainloop()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
5月前
|
缓存 自然语言处理 监控
基于通义大模型的智能客服系统构建实战:从模型微调到API部署
本文详细解析了基于通义大模型的智能客服系统构建全流程,涵盖数据准备、模型微调、性能优化及API部署等关键环节。通过实战案例与代码演示,展示了如何针对客服场景优化训练数据、高效微调大模型、解决部署中的延迟与并发问题,以及构建完整的API服务与监控体系。文章还探讨了性能优化进阶技术,如模型量化压缩和缓存策略,并提供了安全与合规实践建议。最终总结显示,微调后模型意图识别准确率提升14.3%,QPS从12.3提升至86.7,延迟降低74%。
1530 15
|
6月前
|
开发工具 开发者
HarmonyOS实战:腾讯IM之聊天详情页面搭建(二)
本文讲解了在鸿蒙系统中实现腾讯IM聊天功能的完整流程,涵盖对话列表展示、历史消息获取、实时消息更新及文本消息发送等核心功能。通过实际代码示例,详细说明了如何利用IM SDK实现聊天业务逻辑。适合开发者逐步学习并实践,建议点赞收藏以便参考。
186 9
HarmonyOS实战:腾讯IM之聊天详情页面搭建(二)
|
5月前
HarmonyOS实战:腾讯IM之消息删除、撤回和重发(三)
本文详细介绍了鸿蒙 IM 聊天中实现消息撤回、删除和重发功能的方法。消息撤回支持在 120 秒内召回自己发送的消息,通过 `revokeMessage` 方法实现;消息删除使用 `deleteMessage` 方法清除本地与云端记录;消息重发则先删除失败消息再重新发送,并处理用户被拉黑的异常情况。结合状态管理,可轻松实现类似微信的功能,建议点赞收藏并动手实践!
252 3
HarmonyOS实战:腾讯IM之消息删除、撤回和重发(三)
|
6月前
|
开发工具 Android开发 iOS开发
HarmonyOS实战:腾讯IM之聊天列表搭建(一)
本文详细介绍了在鸿蒙系统中实现腾讯IM聊天列表页面的过程。由于腾讯仅提供了接口而无现成UI,需自行开发。文章涵盖需求分析(如删除功能、时间排序、消息更新)、技术实现(展示会话列表、新增会话、删除会话)等内容,并附代码示例。最终实现了类似微信的聊天列表功能,建议点赞收藏以便后续参考。
199 5
HarmonyOS实战:腾讯IM之聊天列表搭建(一)
|
6月前
|
数据采集 机器学习/深度学习 自然语言处理
NLP助力非结构化文本抽取:实体关系提取实战
本文介绍了一套基于微博热帖的中文非结构化文本分析系统,通过爬虫代理采集数据,结合NLP技术实现实体识别、关系抽取及情感分析。核心技术包括爬虫模块、请求配置、页面采集和中文NLP处理,最终将数据结构化并保存为CSV文件或生成图谱。代码示例从基础正则规则到高级深度学习模型(如BERT-BiLSTM-CRF)逐步演进,适合初学者与进阶用户调试与扩展,展现了中文NLP在实际场景中的应用价值。
431 3
NLP助力非结构化文本抽取:实体关系提取实战
|
4月前
|
人工智能 自然语言处理 监控
生成式AI客服实战:智能客服机器人5大自动化能力处理80%高频咨询,释放60%客服人力
生成式AI驱动的智能客服机器人通过五大核心能力自动化处理80%高频咨询,释放60%客服人力。以合力亿捷方案为例,融合大模型与业务知识图谱,实现服务精准化、决策智能化,推动企业服务成本下降超40%。
400 0
|
5月前
|
数据采集 缓存 自然语言处理
NLP驱动网页数据分类与抽取实战
本文探讨了使用NLP技术进行网页商品数据抽取时遇到的三大瓶颈:请求延迟高、结构解析慢和分类精度低,并以目标站点goofish.com为例,展示了传统方法在采集商品信息时的性能问题。通过引入爬虫代理降低封禁概率、模拟真实用户行为优化请求,以及利用关键词提取提升分类准确性,实现了请求成功率从65%提升至98%,平均请求耗时减少72.7%,NLP分类错误率下降73.6%的显著优化效果。最终,代码实现快速抓取并解析商品数据,支持价格统计与关键词分析,为构建智能推荐模型奠定了基础。
109 0
NLP驱动网页数据分类与抽取实战
|
9月前
|
自然语言处理 Prometheus 监控
基于DeepSeek的智能客服系统实战:从开发到部署
本文详细介绍如何将基于DeepSeek的智能客服系统从开发到部署,涵盖服务器选择、环境配置、代码部署及Web服务器设置。通过具体案例和代码示例,讲解系统上线步骤,并介绍使用Prometheus、Grafana等工具进行性能监控的方法。此外,针对高并发、API调用失败等常见问题提供解决方案,确保系统的稳定运行。最后强调数据安全与隐私保护的重要性,帮助读者全面掌握智能客服系统的部署与维护。
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
从词袋到Transformer:自然语言处理的演进与实战
自然语言处理(NLP)是人工智能的重要分支,从早期的规则系统发展到如今的深度学习模型,经历了词袋模型、词嵌入、RNN/LSTM/GRU,再到革命性的Transformer架构。本文通过代码和案例详细介绍了这些技术的演进,并展示了如何从简单的词袋模型过渡到强大的Transformer,涵盖文本分类等实战应用,帮助读者深入理解NLP的核心技术和未来发展潜力。

热门文章

最新文章