无人驾驶飞行器 (UAV) 以飞行基站 (FBS) 的形式辅助 5G 通信附matlab代码

简介: 无人驾驶飞行器 (UAV) 以飞行基站 (FBS) 的形式辅助 5G 通信附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

Investigating the Unmanned Aerial Vehicle (UAV) assisted 5G communications in the form of flying base stations (FBSs). The techniques deployed include assessing, improving, and developing optimization methods to route drones that carry Flying Base Station (FBS) enhancing the terrestrial 5G network infrastructure. One way being effectively collecting and transmitting data through line of sight (LoS) communication to support flash crowds, machine type communication (IoTs), analysis of energy consumption, and total time to complete the tasks.

⛄ 部分代码

xv1 = [2 -2 4];

yv1 = [2 2 5.464];


xv2=[2 4 4];

yv2=[2 -1.4642 5.464];


xv3=[2 -2 4];

yv3=[2 2 -1.4642];


fx=[2,4]    

fy=[2,5.464]


%these coordinates represent traingle and the tangent in the three drone

%case


lx=[2,2];%lx and ly represent the two axis that cut the circle into 4 parts

ly=[0,4];


velocity=60 %velocity of the drone is 60m/s

power= 50   %power of the drone is 50W


 

d=zeros(5,1)



n=50; % number of points that you want

center = [2 ,2]; % center coordinates of the circle [x0,y0]

radius = 2; % radius of the circle

angle = 2*pi*rand(n,1);


rng(1)%fixes the points

r = radius*sqrt(rand(n,1));


 

x = center(1)+r.*cos(angle) ;%x coordinates of the points inscribed in my circle

y = center(2)+r.*sin(angle);%y coordinates of the points inscribed in my circle

x(1)=2;

y(1)=2;%center of the circle coordinates which is the base station in our case where the drone should launch from

v=[x,y]



%first case when we have one drone


   figure(1)

   plot( x, y, 'r*');

   axis equal

   X = v;

   s = size(X,1);

   [p,d1] = tspsearch(X,s)%the 2opt algorithm

   figure(2)

   tspplot(p,X,1)

   opts = statset('Display','final');

   distance_to_finish_the_task1=d1*1000

   time_to_finish_the_task1=distance_to_finish_the_task1/velocity  

   distance_onedrone=d1*1000

   time1=distance_onedrone/velocity

 

   energy_consumption1=power*(distance_onedrone/velocity)

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   figure(3)

   plot( x, y,'r*',ly,lx, 'r-');

   axis equal

   x_center = 2;

   y_center = 2;% coordinates of the center of the circle


   b=v(:,2);% each drone is going through one part of the circle the upper part for y>2 and lower part y<2 that is why the y coordinates are being called

   

   X = v( b<=y_center,:);

   s = size(X,1);

   [p,d1] = tspsearch(X,s)

   figure(4)

   tspplot(p,X,1)


   X =  v( b>=y_center,:);

   s = size(X,1);

   [p,d2] = tspsearch(X,s)

   figure(5)

   tspplot(p,X,1)


   opts = statset('Display','final');

 

   

   

    distance2=[d1*1000 d2*1000];

   distance_to_finish_the_task2=max(distance2);

   time_to_finish_the_task2=distance_to_finish_the_task2/velocity;

   

   distance_twodrones=(d1+d2)*1000;

   time2=((d1*1000/velocity)+(d2*1000/velocity))/2;

   energy_consumption2=power*(distance_twodrones/velocity);

   


 

   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

   


 

figure(6)


plot( x, y,'r*',xv3,yv3,'.-r',xv1,yv1,'.-r',xv2,yv2,'.-r',fx,fy, 'r-')

axis equal



a=v(:,1);

b=v(:,2);

in = inpolygon(a,b,xv1,yv1);


g= [a(in),b(in)]

   

   X=g;

   s = size(X,1);

   [p,d1] = tspsearch(X,s)

   figure(7)

   tspplot(p,X,1)



in = inpolygon(a,b,xv2,yv2);  

 l= [a(in),b(in)]

 

   X =  l;

   s = size(X,1);

   [p,d2] = tspsearch(X,s)

   figure(8)

   tspplot(p,X,1)

 


  in = inpolygon(a,b,xv3,yv3);  

  m= [a(in),b(in)]

 


   

   X = m;

   s = size(X,1);

   [p,d3] = tspsearch(X,s)

   figure(9)

   tspplot(p,X,1)

 

   opts = statset('Display','final');

   

   

 

   

   

   

   

 

   distance3=[d1*1000 d2*1000 d3*1000]

   distance_to_finish_the_task3=max(distance3)

   time_to_finish_the_task3=distance_to_finish_the_task3/velocity

   distance_threedrones=(d1+d2+d3)*1000

   time3=((d1*1000/velocity)+(d2*1000/velocity)+(d3*1000/velocity))/3

   energy_consumption3=power*(distance_threedrones/velocity)

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%






   X = v(a<=x_center & b<=y_center,:);

   s = size(X,1);

   [p,d1] = tspsearch(X,s)

   figure(10)

   tspplot(p,X,1)

 

   X =  v(a<=x_center & b>=y_center,:);

   s = size(X,1);

   [p,d2] = tspsearch(X,s)

   figure(11)

   tspplot(p,X,1)

 


   

   X = v(a>=x_center & b<=y_center,:);

   s = size(X,1);

   [p,d3] = tspsearch(X,s)

   figure(12)

   tspplot(p,X,1)

 



   

   X = v(a>=x_center & b>=y_center,:);

   s = size(X,1);

   [p,d4] = tspsearch(X,s)

   figure(13)

   tspplot(p,X,1)

   

   opts = statset('Display','final');

   

   


   distance4=[d1*1000 d2*1000 d3*1000 d4*1000];

   distance_to_finish_the_task4=max(distance4);

   time_to_finish_the_task4= distance_to_finish_the_task4/velocity;

   

   

   

   distance_fourdrones=(d1+d2+d3+d4)*1000;

   time4=((d1*1000/velocity)+(d2*1000/velocity)+(d3*1000/velocity)+(d4*1000/velocity))/4;

   

   energy_consumption4=power*(distance_fourdrones/velocity);

   

   

   



number_of_drones = {'1drone';'2drones';'3drones';'4drones'}

distance = [distance_onedrone;distance_twodrones;distance_threedrones;distance_fourdrones];

time = [time1;time2;time3;time4];

energy_consumption = [energy_consumption1;energy_consumption2;energy_consumption3;energy_consumption4];



time_to_finish_the_task=[time_to_finish_the_task1;time_to_finish_the_task2;time_to_finish_the_task3;time_to_finish_the_task4];

distance_to_finish_the_task=[distance_to_finish_the_task1;distance_to_finish_the_task2;distance_to_finish_the_task3;distance_to_finish_the_task4];



xorigin=xlim %starting from zero

yorigin=ylim %starting from zero




drones_1dist=sqrt(((time1-xorigin(1))^2 )+((energy_consumption1-yorigin(1))^2))


drones_2dist=sqrt(((time2-xorigin(1))^2 )+((energy_consumption2-yorigin(1))^2))


drones_3dist=sqrt(((time3-xorigin(1))^2 )+((energy_consumption3-yorigin(1))^2))


drones_4dist=sqrt(((time4-xorigin(1))^2 )+((energy_consumption4-yorigin(1))^2))

trade_off=[drones_1dist;drones_2dist;drones_3dist;drones_4dist]


best_trade_off=min([drones_2dist,drones_3dist,drones_1dist,drones_4dist])


table = array2table(trade_off);

table.Properties.VariableNames = {'distance_fourdrones'}

bar(trade_off)

%%%%%

timee= 7 + (9-7).*rand(n,1)

hovering_time=sum(timee)


total_energy_consumption1=power*((distance_onedrone/velocity)+hovering_time);

total_energy_consumption2=power*((distance_twodrones/velocity)+hovering_time);

total_energy_consumption3=power*((distance_threedrones/velocity)+hovering_time);

total_energy_consumption4=power*((distance_fourdrones/velocity)+hovering_time);


total_energy_consumption=[total_energy_consumption1;total_energy_consumption2;total_energy_consumption3;total_energy_consumption4];

total_time=[time1+hovering_time;time2+hovering_time;time3+hovering_time;time4+hovering_time];

total_time_to_finish_the_task=[time_to_finish_the_task1+hovering_time;time_to_finish_the_task2+hovering_time;time_to_finish_the_task3+hovering_time;time_to_finish_the_task4+hovering_time];

D=[distance_onedrone;distance_twodrones;distance_threedrones;distance_fourdrones];


drone_one1=[time1;time_to_finish_the_task1];

drone_one2=[time2;time_to_finish_the_task2];

drone_one3=[time3;time_to_finish_the_task3];

drone_one4=[time4;time_to_finish_the_task4];

data = [drone_one1 drone_one2 drone_one3 drone_one4 ];

figure(14)

hb = bar(data)

set(hb(1), 'FaceColor','r')

set(hb(2), 'FaceColor','b')

set(hb(3), 'FaceColor','g')

set(hb(4), 'FaceColor','y')

ylabel('Time in sec');

set(gca,'XTickLabel',{'average time spent by the drones','time to complete the task'})

set(hb, {'DisplayName'}, {'one drone','two drones','three drones','four drones'}')

legend()

figure(15)


labels = {'one drone','two drones','three drones','four drones'};


plot(total_time_to_finish_the_task,distance_to_finish_the_task,'o',total_time_to_finish_the_task,distance_to_finish_the_task)

text(total_time_to_finish_the_task,distance_to_finish_the_task,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')

ylabel('Distance Covered by the UAV with the Longest Route');

xlabel('Time to complete the task in sec');


figure(16)

labels = {'one drone','two drones','three drones','four drones'};

plot(total_time_to_finish_the_task,total_energy_consumption,'o',total_time_to_finish_the_task,total_energy_consumption)

text(total_time_to_finish_the_task,total_energy_consumption,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')

ylabel('Total Energy Consumption in Joules');

xlabel('Time to complete the Task by the UAVs in sec');



figure(17)

labels = {'one drone','two drones','three drones','four drones'};

plot(time,energy_consumption,'o',time,energy_consumption)

ylabel('Energy Consumption in Joules Excluding Houvering Energy');

xlabel('Time to Complete the Task by the Drones in sec Excluding houvering time');

text(time,energy_consumption,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')




figure(18)

labels = {'one drone','two drones','three drones','four drones'};

plot(total_time,total_energy_consumption,'o',total_time,total_energy_consumption)

text(total_time,total_energy_consumption,labels,'VerticalAlignment','bottom','HorizontalAlignment','right')

ylabel('Total Energy Consumption in Joules ');

xlabel('Average Time Spent by the UAVs in sec');




figure(19)


[maxBar,maxIndex] = max(trade_off);

[minBar,minIndex] = min(trade_off);

figure(100)

bar(trade_off)


text(minIndex-0.5,minBar+5,'Best Trade Off')

set(gca,'XTickLabel',{'one drone','two drones','three drone','four drones'})

xtickangle(45)

xlabel('Number of Drones');

ylabel('Euclidean Distance From the Origin to Each Drone in Meters')

 

title('Best Trade off')

box off

⛄ 运行结果

⛄ 参考文献


⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
19天前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
|
19天前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
|
19天前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
104 8
|
19天前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
|
19天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
106 0
|
19天前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
|
19天前
|
机器学习/深度学习 数据采集 测试技术
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
|
19天前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
|
30天前
|
编解码 运维 算法
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
137 12
|
30天前
|
人工智能 数据可视化 网络性能优化
【顶级SCI复现】虚拟电厂的多时间尺度调度:在考虑储能系统容量衰减的同时,整合发电与多用户负荷的灵活性研究(Matlab代码实现)
【顶级SCI复现】虚拟电厂的多时间尺度调度:在考虑储能系统容量衰减的同时,整合发电与多用户负荷的灵活性研究(Matlab代码实现)

热门文章

最新文章