DNS 工作原理

简介: DNS 工作原理
  1. 在浏览器中输入 www.qq.com 域名,操作系统会先检查自己本地的 hosts 文件是否

有这个网址映射关系,如果有,就先调用这个 IP 地址映射,完成域名解析。

  1. 如果 hosts 里没有这个域名的映射,则查找本地 DNS 解析器缓存,是否有这个网

址映射关系,如果有,直接返回,完成域名解析。

  1. 如果 hosts 与本地 DNS 解析器缓存都没有相应的网址映射关系,首先会找 TCP/IP

参数中设置的首选 DNS 服务器,在此我们叫它本地 DNS 服务器,此服务器收到查询时,
如果要查询的域名,包含在本地配置区域资源中,则返回解析结果给客户机,完成域名解
析,此解析具有权威性。

  1. 如果要查询的域名,不由本地 DNS 服务器区域解析,但该服务器已缓存了此网址

映射关系,则调用这个 IP 地址映射,完成域名解析,此解析不具有权威性。

  1. 如果本地 DNS 服务器本地区域文件与缓存解析都失效,则根据本地 DNS 服务器的

设置(是否设置转发器)进行查询,如果未用转发模式,本地 DNS 就把请求发至 “根 DNS
服务器”,“根 DNS 服务器”收到请求后会判断这个域名(.com)是谁来授权管理,并会返回一
个负责该顶级域名服务器的一个 IP。本地 DNS 服务器收到 IP 信息后,将会联系负责.com
域的这台服务器。这台负责.com 域的服务器收到请求后,如果自己无法解析,它就会找一
个管理.com 域的下一级 DNS 服务器地址(qq.com)给本地 DNS 服务器。当本地 DNS 服务器
收到这个地址后,就会找 qq.com 域服务器,重复上面的动作,进行查询,直至找到
www.qq.com 主机。

  1. 如果用的是转发模式,此 DNS 服务器就会把请求转发至上一级 DNS 服务器,由上

一级服务器进行解析,上一级服务器如果不能解析,或找根 DNS 或把转请求转至上上级,
以此循环。不管是本地 DNS 服务器用是是转发,还是根提示,最后都是把结果返回给本地
DNS 服务器,由此 DNS 服务器再返回给客户机。

目录
相关文章
|
12月前
|
运维 持续交付 云计算
深入解析云计算中的微服务架构:原理、优势与实践
深入解析云计算中的微服务架构:原理、优势与实践
634 86
|
9月前
|
安全 算法 网络协议
解析:HTTPS通过SSL/TLS证书加密的原理与逻辑
HTTPS通过SSL/TLS证书加密,结合对称与非对称加密及数字证书验证实现安全通信。首先,服务器发送含公钥的数字证书,客户端验证其合法性后生成随机数并用公钥加密发送给服务器,双方据此生成相同的对称密钥。后续通信使用对称加密确保高效性和安全性。同时,数字证书验证服务器身份,防止中间人攻击;哈希算法和数字签名确保数据完整性,防止篡改。整个流程保障了身份认证、数据加密和完整性保护。
|
11月前
|
存储 缓存 算法
HashMap深度解析:从原理到实战
HashMap,作为Java集合框架中的一个核心组件,以其高效的键值对存储和检索机制,在软件开发中扮演着举足轻重的角色。作为一名资深的AI工程师,深入理解HashMap的原理、历史、业务场景以及实战应用,对于提升数据处理和算法实现的效率至关重要。本文将通过手绘结构图、流程图,结合Java代码示例,全方位解析HashMap,帮助读者从理论到实践全面掌握这一关键技术。
335 14
|
8月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
565 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
8月前
|
机器学习/深度学习 缓存 自然语言处理
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
997 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
|
9月前
|
机器学习/深度学习 算法 数据挖掘
解析静态代理IP改善游戏体验的原理
静态代理IP通过提高网络稳定性和降低延迟,优化游戏体验。具体表现在加快游戏网络速度、实时玩家数据分析、优化游戏设计、简化更新流程、维护网络稳定性、提高连接可靠性、支持地区特性及提升访问速度等方面,确保更流畅、高效的游戏体验。
219 22
解析静态代理IP改善游戏体验的原理
|
9月前
|
编解码 缓存 Prometheus
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
本期内容为「ximagine」频道《显示器测试流程》的规范及标准,我们主要使用Calman、DisplayCAL、i1Profiler等软件及CA410、Spyder X、i1Pro 2等设备,是我们目前制作内容数据的重要来源,我们深知所做的仍是比较表面的活儿,和工程师、科研人员相比有着不小的差距,测试并不复杂,但是相当繁琐,收集整理测试无不花费大量时间精力,内容不完善或者有错误的地方,希望大佬指出我们好改进!
578 16
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
|
8月前
|
传感器 人工智能 监控
反向寻车系统怎么做?基本原理与系统组成解析
本文通过反向寻车系统的核心组成部分与技术分析,阐述反向寻车系统的工作原理,适用于适用于商场停车场、医院停车场及火车站停车场等。如需获取智慧停车场反向寻车技术方案前往文章最下方获取,如有项目合作及技术交流欢迎私信作者。
548 2
|
10月前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
11533 46
|
9月前
|
Java 数据库 开发者
详细介绍SpringBoot启动流程及配置类解析原理
通过对 Spring Boot 启动流程及配置类解析原理的深入分析,我们可以看到 Spring Boot 在启动时的灵活性和可扩展性。理解这些机制不仅有助于开发者更好地使用 Spring Boot 进行应用开发,还能够在面对问题时,迅速定位和解决问题。希望本文能为您在 Spring Boot 开发过程中提供有效的指导和帮助。
1051 12

相关产品

  • 云解析DNS
  • 推荐镜像

    更多
  • DNS